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Abstract

QP-DAE system models will potentially play an important role in process systems engineering
because the majority of lumped process models can be embedded into this class without approxi-
mation.

In this report two canonical forms, a hidden non-minimal Lotka-Volterra (LV) ODE form and
a minimal QP-DAE form, are proposed for representing a wide class of lumped process systems
in index-1 DAE form. The form invariance properties of QP-DAE models, their steady-states and
local stability properties at steady-state points are discussed.

Algorithms for transforming a QP-DAE in its hidden non-minimal QP-ODE form into its min-
imal QP-DAE form (i.e. the retrieval of the algebraic equations) are also described.

The notions and tools are illustrated on simple examples.
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Chapter 1

Introduction

Lumped dynamic process models, which have no spatial distribution of their variables,
comprise sets of differential-algebraic equations (DAEs). Many lumped dynamic models
of process systems can be written without approximation in quasi-polynomial differential-
algebraic equation (QP-DAE) form.

The QP formalism has a great advantage: it can capture many kinds of nonlinearity
without approximation in a strongly structured universal form ([5]). QP systems have both
graph and matrix representations; techniques from both these disciplines can be applied.

In this report, we extend the earlier structural analysis work ([8]) to assess the static
and dynamic properties of DAE process models in QP form. The QP approach allows the
use not only of structural information for model analysis, but also the model’s constituent
mathematical functions and parameter values.

Similarly to the case of other special system classes (such as LTI, input-affine nonlinear,
etc.) the various algebraically equivalent forms of QP-DAE models serve to investigate
different properties such as local stability or computational decompositions.
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Chapter 2

The structure of QP-DAE system models

Consider the general form of semi-explicit DAE models [1]:

ẋ = F (x, z) , x(0) = x0 (2.1)

0 = G(x, z) (2.2)

where F : R
n×d → R

n and G : R
n×d → R

d with n being the dimension of the differential
variable vector x and d being the dimension of the algebraic variable vector z. The above
DAE model is a QP-DAE model if both F and G are in quasi-polynomial form.

The aim of this section is to investigate how and under which conditions can one apply
the description and analysis tools developed for QP-ODE models also in the case of QP-DAE
models.

2.1 The general form of QP-DAE models

The general form is obtained by extending the general form of QP-ODE models [5] with
suitable algebraic variables and algebraic equations as follows.

ẋi = xi

(
λi +

m∑

j=1

Aij

n∏

k=1

x
Bjk

k ·
d∏

k=1

z
Bj(n+k)

k

)
, (2.3)

i = 1, . . . , n,

0 = zi

(
λn+i +

m∑

j=1

A(n+i)j

n∏

k=1

x
Bjk

k ·

d∏

k=1

z
Bj(n+k)

k

)
, (2.4)

i = 1, . . . , d, m ≥ (n + d)

where the parameters A and B of the model are (n + d)×m, m× (n + d) real matrices and
λ ∈ R

(n+d) is a real vector.
It is important that we assume that every variable is strictly positive, i.e.

xi > 0 , i = 1, ..., n , zi > 0 , i = 1, ..., d

Inputs are regarded as parameters, thus this autonomous form can be regarded as a
system model with xi being the state variables.
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It is important to notice that the monomials, also called quasi-monomials, of a QP-
DAE model are present in both the differential and algebraic equations in the form:

qj =
n∏

k=1

x
Bjk

k ·

d∏

k=1

z
Bj(n+k)

k , j = 1, ...,m (2.5)

It is important to observe, that the algebraic equations (2.4) of the above QP-DAE form
are ambiguous, as we can multiply any of them with a quasi-polynomial expression and
they still remain QP-algebraic. Such a multiplication, however, will change the apparent
quasi-monomials (2.5).

Example 1 A simple example of a QP-DAE model will be used to illustrate the concepts
throughout this report. The DAE model is:

ẋ1 = x1(5 + 3x3
1x3 + 4x2

2) (2.6)

ẋ2 = x2(2 + 7x1x
5
3) (2.7)

x3 = 3x4
1x

5
2 + 4x2

2 (2.8)

The above DAE can be easily transformed to the general form in Eqs. (2.3)-(2.4) to get

ẋ1 = x1(5 + 3x3
1x3 + 4x2

2) (2.9)

ẋ2 = x2(2 + 7x1x
5
3) (2.10)

0 = x3(−x3 + 3x4
1x

5
2 + 4x2

2) (2.11)

with the quasi-monomials

Q =
{
x3

1x3, x2
2, x1x

5
3, x4

1x
5
2, x3

}
(2.12)

The differential and algebraic variable sets are x = [x1 x2]
T , z = x3, so we have n = 2

and d = 1. The parameters of the model are

λ =




5
2
0


 , A =




3 4 0 0 0
0 0 7 0 0
0 4 0 3 −1


 , B =




3 0 1
0 2 0
1 0 5
4 5 0
0 0 1




(2.13)

Example 2: A continuous fermentation process A fermentation process with
no control input (constant F and SF ) and quadratic type reaction kinetics will also be
considered. Its DAE model is:

Ẋ = X(−
F

V
+ µ) (2.14)

Ṡ = S(−
F

V
+

SF F

V
S−1 −

1

Y
XS−1µ) (2.15)

µ = S2 (2.16)

The above equation can also be transformed to the general QP-DAE form:

Ẋ = X(−
F

V
+ µ) (2.17)

Ṡ = S(−
F

V
+

SF F

V
S−1 −

1

Y
XS−1µ) (2.18)

0 = µ(S2 − µ) (2.19)
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Here again we have a single algebraic variable z = µ and the set of quasi-monomials is

Q =
{
µ, S−1, XS−1µ, S2

}
(2.20)

The parameters of the QP-DAE model are:

λ =




−F
V

−F
V

0


 , A =




1 0 0 0
0 SF F

V
− 1

Y
0

−1 0 0 1


 , B =




0 0 1
0 −1 0
1 −1 1
0 2 0


 (2.21)

2.2 The monomial-explicit form of QP-DAE models

In this section we will show that under mild conditions it is possible to express the monomials
of the algebraic variables of the implicit QP-DAE model in Eqs. (2.3-2.4) explicitly (in terms
of the differential ones). This monomial-explicit description is not in QP form in general, but
we will show that it becomes a QP model by introducing only one new algebraic variable.

The special monomial-explicit QP-DAEs are special cases of the general QP-DAE model
class where one can easily develop their QP-ODE form by direct substitution and variable
embedding. This enables to apply the tools and techniques developed for QP-ODE models
for this QP-DAE subclass in an easy and straightforward way.

Let us consider the algebraic equations (2.4). Construct the set of algebraic quasi-
monomials Qz by considering the differential variables as constant coefficients. Assume
now that the number of these quasi-monomials is equal to the number of algebraic equations
and that of the algebraic variables (d), i.e.

Qz = {qz
1, . . . , q

z
d} (2.22)

where

qz
i =

d∏

j=1

z
Bz

ij

j , Bz ∈ R
d×d (2.23)

This means that the logarithm of these QMs are linear combinations of the logarithm of the
algebraic variables:

lnqz
i =

∑
Bz

ijlnzj

which can be written in compact form:

qz∗ = Bzz∗ (2.24)

where the superscript ∗ on a vector indicates taking the logarithm element-by-element. If
this assumption is fulfilled, then these quasi-monomials can be expressed explicitly from the
algebraic equations with the following method. Write Eq. (2.4) in the following matrix-
vector form:

µ(λ, x) = A(x)qz (2.25)

where µ is a vector containing the terms which are independent of the algebraic variables,
A is a matrix-valued function of the differential variables, while qz denotes the vector made
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of qz
1, . . . , q

z
d. This is a linear set of equations with respect to qz. If µ(λ, x) 6= 0 and

det(A(x)) 6= 0 then this set of equations can be solved for qz by using Cramer’s Rule:

qz
i =

det(Si)

det(A)
where Si(λ, x) = (A1 . . . Ai−1 µ Ai+1 . . . Ad) , i = 1, . . . , d (2.26)

and Ai, i = 1, . . . , d denotes the i-th column of A. This form of the algebraic equations is
non-QP in general because det(A) is generally a quasi-polynomial not a monomial, but if we
introduce an additional algebraic variable

zd+1 =
1

det(A(x))
(2.27)

then the monomial-explicit form of algebraic equations becomes a QP description:

qz
i = zd+1det(Si(x)) , i = 1, . . . , d (2.28)

z−1
d+1 = det(A(x)) (2.29)

since det(A(x)) and det(Si(x)) , i = 1, . . . , d are polynomials of x. Thus, the monomial-
explicit form of QP-DAE models given by Eqs. (2.3,2.28-2.29) consists of m + 1 equations.

From Eq. (2.24) it follows that if Bz is of full rank, the algebraic variables can be
expressed from the explicitly given algebraic monomials:

z∗ = (Bz)−1qz∗ (2.30)

and can be substituted into the differential equations of the model. This model is minimal
(containing n differential equations) but it is non-QP in general. Non-QP terms in this model
can be handled by variable embedding, resulting in a non-minimal, but QP differential model.
For example, the embedding of zd+1 is performed by taking its time-derivative:

d

dt
zd+1 = −

1

det(A(x))2

d

dt
det(A(x)) = −z2

d+1

d

dt
det(A(x)) (2.31)

which results in a QP-ODE equation, since det(A(x)) and therefore its time-derivative are
quasipolynomials.

2.2.1 A simple example

Consider the following QP-DAE model with implicit algebraic equations:

ẋ = x
(
x2z1 + z3

2

)
(2.32)

0 = x2z2
1z2 + xz2

1z2 + 9x3 + 5x + 8 + 2xz
3
2
2 (2.33)

0 = 3x2z3
1z2 + 4xz1 + z1z

3
2
2 (2.34)

The number of monomials of the algebraic equations is 8, and the number of algebraic
monomials (qz’s) is five. It does not match with the number of the algebraic equations
(which is 2). Thus, this model cannot be transformed into monomial-explicit form. But, if
one divides the second algebraic equation by z1:

ẋ = x
(
x2z1 + z3

2

)
(2.35)

0 = x2z2
1z2 + xz2

1z2 + 9x3 + 5x + 8 + 2xz
3
2
2 (2.36)

0 = 3x2z2
1z2 + 4x + z

3
2
2 (2.37)
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the number of algebraic monomials reduces to 2, and therefore the condition on the number of
algebraic monomials is fulfilled. Write the algebraic equations in the form µ(λ, x) = A(x)qz:

[
−9x3 − 5x − 8

−4x

]
=

[
x2 + x 2x
3x2 1

] [
z2
1z2

z
3
2
2

]
(2.38)

By solving this set of equations with the condition that det(A(x)) 6= 0 and introducing

z3 =
1

det(A(x))
=

1

−6x3 + x2 + x
(2.39)

we get the following monomial-explicit DAE model:

ẋ = x
(
x2z1 + z3

2

)
(2.40)

qz
1 = z2

1z2 = z3(−9x3 + 8x2 − 5x − 8) (2.41)

qz
2 = z

3
2
2 = z3(27x5 + 11x3 + 20x2) (2.42)

z−1
3 = −6x3 + x2 + x (2.43)

As a result, we get a monomial-explicit QP-DAE description at the price of introducing a
new algebraic variable. Since the exponent matrix Bz is of full rank, and its inverse,

(Bz)−1 =

[
2 1
0 3

2

]−1

=

[
1
2

−1
3

0 2
3

]
(2.44)

is also of full rank, the algebraic variables z1 and z2 can be given explicitly:

z1 = (qz
1)

1
2 (qz

2)
− 1

3 =
(
z3(−9x3 + 8x2 − 5x − 8)

) 1
2
(
z3(27x5 + 113 + 20x2)

)− 1
3 (2.45)

z2 = (qz
2)

2
3 =

(
z3(27x5 + 113 + 20x2)

) 2
3 (2.46)

The algebraic part can be substituted into the differential equation resulting in a minimal
one-dimensional ODE that is, unfortunately, not in QP form:

ẋ = x

(
x2
(−9x3 + 8x2 − 5x − 8

−6x3 + x2 + x

) 1
2
(27x5 + 113 + 20x2

−6x3 + x2 + x

)− 1
3

+
(27x5 + 113 + 20x2

−6x3 + x2 + x

)2
)

To get a (non-minimal) QP-ODE representation, a possible way is embedding z3 and then
taking the time-derivative of qz

1 and qz
2:

ẋ = x
(
x2z1 + z3

2

)
= x

(
x2(qz

1)
1
2 (qz

2)
− 1

3 + (qz
2)

2
)

(2.47)

ż3 = −z2
3(18x2 + 2x + 1)ẋ (2.48)

q̇z
1 = (−9x3 + 8x2 − 5x − 8)ż3 + z3(−27x2 + 16x − 5)ẋ (2.49)

q̇z
2 = (27x5 + 113 + 20x2)ż3 + z3(135x4 + 33x2 + 40x)ẋ (2.50)

This yields a set of QP-ODEs, with variables x, qz
1, q

z
2 and z3:

ẋ = x
[
x2(qz

1)
1
2 (qz

2)
− 1

3 + (qz
2)

2
]

(2.51)

q̇z
1 = qz

1

[
(qz

1)
−1
(
z3

(
− 27x2 + 16x − 5

)
x
(
x2(qz

1)
1
2 (qz

2)
− 1

3 + (qz
2)

2
)
−

−
(
− 9x3 + 8x2 − 5x − 8

)
z2
3

(
18x2 + 2x + 1

)
x
(
x2(qz

1)
1
2 (qz

2)
− 1

3 + (qz
2)

2
))]

(2.52)

q̇z
2 = qz

2

[
(qz

2)
−1
(
z3

(
135x4 + 33x2 + 40x

)
x
(
x2(qz

1)
1
2 (qz

2)
− 1

3 + (qz
2)

2
)
−

−
(
27x5 + 113 + 20x2

)
z2
3

(
18x2 + 2x + 1

)
x
(
x2(qz

1)
1
2 (qz

2)
− 1

3 + (qz
2)

2
))]

(2.53)

ż3 = z3

[
− z3

(
18x2 + 2x + 1

)
x
(
x2(qz

1)
1
2 (qz

2)
− 1

3 + (qz
2)

2
)]

(2.54)
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In the previous example, the four-dimensional monomial-explicit QP-DAE description
could be transformed into a QP-ODE without decreasing the state-space dimension (a four-
dimensional QP-DAE yields a four-dimensional QP-ODE while the minimal representation
is a one-dimensional non-QP ODE).

This was the "worst case" from the viewpoint of minimality, yielding an n + d + 1
dimensional QP-ODE model, by embedding the reciprocal of a determinant and taking the
time-derivative of the expressed algebraic monomials.

In contrast, the "best case" for transformation into QP-ODE form is when the substitu-
tion of the algebraic monomials yields a QP-ODE representation. In this case, the dimension
of the state space is increased by only one - and is therefore equal to n + 1 - because of em-
bedding the reciprocal of the determinant zd+1 = 1

det(A(x))
. Moreover if this determinant is

a monomial only, then embedding is unnecessary, and the resulting QP model is minimal -
the dimension of the resulting QP-ODE model is equal to n. Therefore the following bounds
hold:

n ≤ dim(resulting QP-ODE) ≤ n + d + 1 (2.55)

which means that the transformation of a monomial-explicit QP-DAE into QP-ODE form
does not increase the state-space dimension.

2.3 An equivalent non-minimal QP-ODE form of QP-

DAE models

In the previous section, the transformation of index-1 monomial-explicit QP-DAEs to QP-
ODE form has been presented. In the following, the QP-ODE form of arbitrary index-1
QP-DAE models will be considered following the general derivation presented in [1].

Let us assume that the differential index of our DAE model is 1 on a connected subset
S ⊂ Rn+d, which means that the first time-derivative of the algebraic variable vector can be
expressed as an explicit function of the differential and the algebraic variables. A necessary
condition is the invertibility of the Jacobian matrix of the algebraic equations (G(x, z) in
Eq. (2.4)) with respect to the algebraic variables:

∃J−1(x, z), where J =

[
∂G

∂z

]
, ∀ [x, z]T ∈ S (2.56)

Note that this condition is equivalent to det(J) 6= 0 , ∀ [x, z]T ∈ S.
Also note that this condition is only a necessary, but not sufficient, condition for the

expressibility of z in terms of x, but is quite enough to represent ż in terms of ẋ on S.
If Eq. (2.56) is fulfilled, one can differentiate the algebraic equations in the DAE model

ż = −

[
∂G

∂z

]−1 [
∂G

∂x

]
ẋ = Ĝ(x, z)ẋ (2.57)

on S, by means of the Implicit Function Theorem. Note that Ĝ(x, z) is a matrix valued
function.

If we now consider the QP-form of the differential equations in the DAE model, then the
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elements of ż can be written in the following form:

żi = zi

(
1

zi

n∑

l=1

Ĝil(x, z)ẋl

)
=

= zi

(
n∑

l=1

Ĝil(x, z)

zi

xlλl +
n∑

l=1

m∑

j=1

Ĝ(x, z)il

zi

xlAljqj

)
(2.58)

i = 1, . . . , d

where Ĝik(x, z) denotes the appropriate element of the matrix-valued function Ĝ.

Note that the elements of Ĝ are not necessarily in a quasi-monomial form, because we
need to invert the matrix ∂G

∂z
. But, if det(∂G

∂z
) is in the form of a quasi-monomial, then this

property is fulfilled, since the set of quasi-polynomials is closed under differentiation, and
also under addition and multiplication occurring in taking the adjoint of a matrix and in
matrix multiplication.

Also note that if det(∂G
∂z

) is a quasi-polynomial, then its reciprocal can be embedded by
introducing it as a new algebraic variable and taking its first time-derivative. From these it
is easy to see that the resulting QP-ODE model will have the following dimension:

n + d ≤ dim(resulting QP-ODE) ≤ n + d + 1 (2.59)

As we can see, the "best case" dimension is much worse than that of QP-ODE models orig-
inating from monomial-explicit QP-DAEs. At the same time, the latter method is available
for arbitrary index-1 models.

Non-minimal QP-ODE form One can consider the resulting set of ODEs in Eqs. (2.3)
and (2.58) as a non-minimal ODE representation of the original system that is in QP form
with the set of quasi-monomials extended with new members, which come from the following
terms:

Ĝil(x, z)

zi

xlλl,
Ĝil(x, z)

zi

xlAljqj, i = 1 . . . d, j = 1 . . . m, l = 1 . . . n (2.60)

It is important to notice that the right-hand sides of the equations (2.3) and (2.58) are
related by an algebraic equation as seen in Eq. (2.57). This fact implies the non-minimality
of the pure ODE form of an index-one QP-DAE model.

Later we shall see that algebraic methods can be developed by using the equality (2.57)
for retrieving the algebraic equations from a non-minimal QP-ODE form.

Example 1 (continued) First we take the time-derivative of x3:

ẋ3 = 4 · 3x4
1x

5
2(5 + 3x3

1x3 + 4x2
2) + 5 · 3x4

1x
5
2(2 + 7x1x

5
3) + 2 · 4x2

2(2 + 7x1x
5
3) (2.61)

Arranging this equation in QP-form, we get the following QP-ODE representation:

ẋ1 = x1(5 + 3x3
1x3 + 4x2

2) (2.62)

ẋ2 = x2(2 + 7x1x
5
3) (2.63)

ẋ3 = x3(90x4
1x

5
2x

−1
3 + 36x7

1x
5
2 + 48x4

1x
7
2x

−1
3 + 105x5

1x
5
2x

4
3 + 16x2

2x
−1
3 + 56x1x

2
2x

4
3) (2.64)

This is a non-minimal QP model, where the third differential equation is responsible for
non-minimality.

Observe that the number of quasi-monomials has increased drastically compared to the
QP-DAE form in Eq. (2.12):

Q =
{
x3

1x3, x2
2, x1x

5
3, x4

1x
5
2x

−1
3 , x7

1x
5
2, x4

1x
7
2x

−1
3 , x5

1x
5
2x

4
3, x2

2x
−1
3 , x1x

2
2x

4
3

}
(2.65)
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Example 2 (continued) By taking the time-derivative of µ and arranging this equation
in QP form we get the following QP-ODE representation:

Ẋ = X(−
F

V
+ µ) (2.66)

Ṡ = S(−
F

V
+

SF F

V
S−1 −

1

Y
XS−1µ) (2.67)

µ̇ = µ(−
2F

V
S2µ−1 −

2

Y
XS +

2SF F

V
Sµ−1) (2.68)

This is a non-minimal QP model, where the third differential equation is responsible for
non-minimality.

2.4 The logarithmic form

In order to obtain an easy-to-handle compact logarithmic form of the QP-DAE equations,
we extend the variable vectors as follows:

X∗ =




x∗

−−
z∗


 , X̃∗ =




x∗

−−
0




where the natural logarithm of a scalar variable ϕ is denoted by ϕ∗, i.e.

ϕ∗ = ln ϕ

and the logarithm is taken element-wise when constructing x∗ from a vector x.
It is important to note that X∗ and X̃∗ are equivalent under the condition when z = 1

with 1 being the vector of all 1 entries. This means that the time-derivatives of the algebraic
variables are equal to zero, which is the case in the limit if we consider the pseudo-ODE
form of a QP-DAE model.

The compact vector-matrix form of Eqs. (2.3)-(2.4) is as follows:

d

dt
X̃∗ = λ + AQ (2.69)

with
Q∗ = BX∗ (2.70)

It will be useful later if we partition the system parameter matrices and vectors according
to the variable vector partition to get:

A =




Ad

−−
Aa


 , λ =




λd

−−
λa


 , B =

[
Bd | Ba

]
(2.71)

Finally we can construct a compact linear-analogue logarithmic form of QP-DAE equations
by uniting the parameters A and λ in a structure matrix Ã ∈ R

(n+d)×(m+1) as follows:

Ã =
[

λ | A
]

(2.72)
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and extend the matrix B with a 0 row to have

B̃ =




0
−−
B


 , Q̃ =




1
q1

. . .

qm


 (2.73)

The compact linear-analogue logarithmic form of QP-DAE equations is then as follows:

d

dt
X̃∗ = ÃQ̃ (2.74)

with
Q̃∗ = B̃X∗ (2.75)

2.5 QP algebraic equations

QP-DAE models contain both a QP-ODE part with the algebraic variables regarded as
constants and a QP algebraic part. This section deals with the QP algebraic part only. It is
important for calculating the steady-states of QP-DAE and QP-ODE systems.

2.5.1 The general form of QP algebraic equations

The general form of a quasi-polynomial algebraic (QP-AE) set of equations is

0 = zi

(
λi +

m∑

j=1

Aij

d∏

k=1

z
Bjk

k

)
, (2.76)

i = 1, . . . , d, m ≥ d

where the parameters A and B of the model are d×m and m× d real matrices and λ ∈ R
d

is a real vector.
Note that a QP-AE can be obtained from a QP-DAE by considering its algebraic part only

and regarding the differential variables as parameters. If we characterize the nonlinearity
of such a part then the solvability properties of the algebraic equations for the algebraic
variables will be taken into account. This is relevant for some solution techniques for DAE
models. Likewise, any subset (component) of a set of QP-algebraic equations with the
number of equations equal to the number of unknown variables (e.g. an L-component) can
be regarded as a QP-AE in the above form if one considers the external (known) variables
as parameters.

2.5.2 QM-transformation of QP-AEs

The logarithmic form of QP-AEs is obtained if one divides each equation by zi > 0:

0 = λ + AQ , Q∗ = Bz∗ (2.77)

Note that the first equation above does not contain any logarithmic variables but puts a
linear algebraic constraint of the set of quasi-monomials. The logarithmic variables appear
only in the second equation.
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The QM-transformation of a QP-AE model is generated by an invertible matrix C ∈ R
d×d

to get
z∗ = Cẑ∗ , ẑ∗ = C−1z∗

Then the transformed equations in the new variables are

0 = C−1λ + C−1AQ = λ̂ + ÂQ̂

Q∗ = Bz∗ = BCC−1z∗ = BCẑ∗ = Q̂∗ (2.78)

B̂ = B · C , Â = C−1 · A , λ̂ = C−1 · λ

with the same invariants as for QP-ODE models, i.e. M = ALV = BA, Λ = Bλ and Q.

2.5.3 Lotka-Volterra form

The Lotka-Volterra form of a QP-AE can now be obtained by extending the variable vector
to form a square m = d case and then following the method described for the QP-ODE
models.

In the general m ≥ d case we extend the variable vector z with (m−d) constant 1-s (and
call it χ) and use the partitioned and extended compact linear-analogue logarithmic form of
the model 


0

Q∗
p

Q∗
s


 =




0 0
Bp 0
Bs I



[

z∗

0

]
, 0 =

[
λ Ap As

0 0 0

]


1
Qp

Qs


 (2.79)

Here again, there is a nonlinear QM-type algebraic relationship between the d independent
primary quasi-monomials in Qp and the rest of them in Qs in the form of

Q∗
s = BsB

−1
p Q∗

p (2.80)

The Lotka-Volterra form of the original QP-AE can now be obtained by QM-transforming
the above equation with

C =

[
Bp 0
Bs I

]−1

It is important to note that the Lotka-Volterra form of a QP-AE model is a LV-AE
model, i.e. a set of second-order algebraic equations. This set of equations, however, is
not algebraically independent, because there are (m − d) QM-type algebraic dependencies
between its variables in the form of Eq. (2.80).

A simple example Consider the algebraic equations of an open vessel with a one-
component liquid phase:

0 = cpmT − U (2.81)

0 = k0 + k1T + k2T
2 + k3T

3 − cp (2.82)

where the algebraic variables are the specific heat z1 = cp and the temperature z2 = T

while the differential variables - which are considered now as constants - are the mass m and
the internal energy U . This set of algebraic equations forms a QP-AE with the following
parameter matrices and the extended algebraic variable vector χ:

λ =

[
−U

k0

]
, A =

[
m 0 0 0 0
0 k1 k2 k3 −1

]
, B =




1 1
0 1
0 2
0 3
1 0




, χ =




cp

T

1
1
1




=




z1

z2

1
1
1
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The partitioned and extended linear-analogue logarithmic form of the model is:




0
Q∗

p

Q∗
s


 =




0 0 0 0 0
1 1 0 0 0
0 1 0 0 0
0 2 1 0 0
0 3 0 1 0
1 0 0 0 1







z∗1
z∗2
0
0
0




, 0 =




−U m 0 0 0 0
k0 0 k1 k2 k3 −1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0







1
Qp

Qs




where Eq. (2.80) defines the relationship between the primary and secondary monomials:

Q∗
s =




2z∗2
3z∗2
z∗1






0 2
0 3
1 0



[

1 1
0 1

]−1 [
z∗1 + z∗2

z∗2

]
=




0 2
0 3
1 −1



[

z∗1 + z∗2
z∗2

]
(2.83)

The Lotka-Volterra form can be achieved by a QM transformation with the following
transformation matrix:

C =




1 1 0 0 0
0 1 0 0 0
0 2 1 0 0
0 3 0 1 0
1 0 0 0 1




−1

(2.84)

The resulting LV model can be written in the following compact form:

0 =




−U + k0 m k1 k2 k3 −1
k0 0 k1 k2 k3 −1
2k0 0 2k1 2k2 2k3 −2
3k0 0 3k1 3k2 3k3 −3
−U m 0 0 0 0




[
1
χ̂

]
(2.85)

where
χ̂∗ = C−1χ∗ (2.86)

2.6 QM-transformation

As we have seen earlier in section 2.5 the quasi-monomial transformation (QM-transformation)
is generated by an invertible transformation matrix C such that

X̂i =
n∏

k=1

xCik

k ·
d∏

k=1

z
Ci(n+k)

k , i = 1, . . . , n + d (2.87)

where X is the united vector of both the differential x and algebraic z variables.
The effect of QM-transformation on the logarithmic variables can easily be computed

X∗ = C−1X̂∗ , X∗
i = lnXi

with the quasi-monomials being Q∗ = BX∗.
Similarly to the case of QM-transforming a QP-AE (see Eq. (2.78)), the effect of the

QM-transformation on a QP-ODE model can be seen on its logarithmic form:

˙̂
X∗ = C−1λ + C−1AQ (2.88)

Q∗ = BX∗ = BCC−1X∗ = BCX̂∗ = Q̂∗ (2.89)

B̂ = B · C , Â = C−1 · A , λ̂ = C−1 · λ (2.90)

where the invariants of the transformation are M = B · A, Λ = B · λ and Q.
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2.6.1 QM-transformation of QP-DAE models

It can easily be seen that the logarithmic form (2.74) of a QP-DAE is not invariant with
respect to QM-transformation because the differential part (a QP-ODE) and the algebraic
part (a QP-AE) will be "mixed" by a general transformation matrix C ∈ R

(n+d)×(n+d).
However, both "pure" QP-AEs and QP-ODEs are invariant. Therefore, we have two options
if we want to have a QP-DAE form that is invariant with respect to QM-transformation.

1. Construct the equivalent non-minimal QP-ODE form of the QP-DAE (see section 2.3)
and perform the transformation afterwards.

2. Use a restricted version of QM-transformation with a block diagonal transformation
matrix C such that

C =

[
Cn×n 0

0 Cd×d

]



Chapter 3

Form invariance

It has been shown in the previous sections that the DAE form of a QP-DAE will not generally
be invariant with respect to QM-transformation but it can be embedded by introducing new
variables into QP-ODEs in the index 1 case. The embedding can be seen as a transformation
from the DAE form to the QP-ODE one that is not unique. The inverse of this embedding,
that is the transformation that retrieves the hidden algebraic equations from a non-minimal
QP-ODE, is the subject of this chapter.

The significance of the retrieval of the hidden algebraic equations from a non-minimal QP-
ODE model is best explained from a control theoretical point of view. It is well known from
linear and nonlinear system theory that the minimality of a state-space model [6] (i.e. a QP-
ODE in our problem statement) is a necessary condition for designing any state feedback type
controller (and most of the linearizing and stabilizing ones, as well) [4]. There exist general
procedures to reduce non/minimal state-space models to find their minimal representation
but these require to solve partial differential equations symbolically. Therefore, it is of great
practical and theoretical importance from the viewpoint of dynamic analysis to find a feasible
alternative for them.

3.1 Form invariance of linear DAE models

Before we start investigating the form-invariance of QP-DAE models with respect to QM-
transformations, let us look at a simple analogous case - the form invariance of linear DAE
models with respect to linear transformations.

Consider the following general description of linear DAE systems (with no control inputs):

[
ẋ

0

]
=

[
A11 A12

A21 A22

] [
x

z

]
(3.1)

where x ∈ R
n is the vector of differential variables and z ∈ R

d is the vector of algebraic
variables.

Let us assume that the model in Eq. (3.1) has a differential index of one (in the linear
case this is equivalent to the assumption that A22 is invertible), then the algebraic variables
can be expressed in terms of the differential ones:

z = −A−1
22 A21x (3.2)

16
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The DAE canonical form We can substitute the algebraic relationship (3.2) into the
differential equation part of the original DAE model to obtain:

ẋ = (A11 − A12A
−1
22 A21)x (3.3)

The above purely differential description contains the minimum number of differential equa-
tions describing the time-varying behaviour of the differential variables. Together with Eq.
(3.2) it is equivalent to the original model in Eq. (3.1).

Observe that Eq. (3.3) is an autonomous model in itself, with the advantages of be-
ing both purely differential and minimal. Note that state-space models originating from
nonlinear index-1 DAEs rarely have these properties.

Non-minimal ODE form The time-derivative of equation (3.2) gives

ż = −A−1
22 A21ẋ = −A−1

22 A21(A11x + A12z) (3.4)

We can now leave out the algebraic equations and substitute them with the above alge-
braically equivalent set of differential equations which leads to the following linear ODE:

[
ẋ

ż

]
=

[
A11 A12

−A−1
22 A21A11 −A−1

22 A21A12

] [
x

z

]
=:

[
Â11 Â12

Â21 Â22

] [
x

z

]
(3.5)

which is a hidden DAE system with the state matrix Â of dimension (n + d) × (n + d).
This linear ODE is non-minimal, which means that the dynamics of the system can be

described by a system with a smaller set of differential equations. If A11 is invertible, then
the order of the system equals rank(A11) = n, i.e. Â is rank-deficient.

If the initial conditions [x(t0) z(t0)]
T are consistent (i.e. they fulfill the algebraic equation

0 = A21x(t0) + A22z(t0)), this model is equivalent to the DAE model in Eq. (3.1).

The application of a general invertible linear transformation

T =

[
T11n×n

T12n×d

T21d×n
T22d×d

]
(3.6)

to the model in Eq. (3.5) linearly combines the variables, but it does not change the rank
of the transformed state matrix:

T

[
ẋ

ż

]
= T

[
Â11 Â12

Â21 Â22

]
T−1 · T

[
x

z

]
(3.7)

which leads to
[

T11ẋ + T12ż

T21ẋ + T22ż

]
= Ã

[
T11x + T12z

T21x + T22z

]
(3.8)

where Ã = TÂT−1.

As we can see, a general linear invertible transformation transforms a non-minimal ODE to
a non-minimal ODE, or in other words a hidden DAE system to an equivalent hidden DAE
system.
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3.1.1 Retrieving the algebraic equations from the transformed lin-

ear DAE

Under the index-one assumption, we can retrieve the original DAE structure from a hidden
linear DAE system in its non-minimal ODE form by finding an appropriate transformation
based on the observations of the previous section.

Detection of non-minimality For this purpose we can use the fact that the coefficient
matrix Â of a hidden DAE system is not of full rank because of construction, but is of rank
n < n + d. Assume that A11 is invertible in Eq. (3.5) and thus the first n columns or rows
are linearly independent of each other. Then the remaining d rows (or columns) can be
expressed as a linear combination of the n rows (or columns) participating in the spanning
set of the n-dimensional sub-space.

The retrieval algorithm Consider a linear ODE model in the form of

˙̃x =
dx̃

dt
= Âx̃ (3.9)

such that Â ∈ R
en×en but rank Â = n < ñ. If we rearrange the order of variables such that he

first n rows of Â are linearly independent vectors, then the remaining rows âj, j = n+1, .., ñ
can be expressed as linear combinations of the first n rows, i.e.

âj =
n∑

k=1

αjkâk , j = n + 1, .., ñ (3.10)

The coefficient row vector αj corresponding to xj , j = n+1, .., ñ can be computed by solving

a linear set of equations. Since rank(Â) = n, it has n independent columns. Partition Â in
such a way that its first n columns are linearly independent:

Âpart =

[
M11 M12

M21 M22

]
(3.11)

where the first block-column contains the linearly independent columns, the first block-row
contains the linearly independent rows. The coefficient row vector αj can be computed by
solving the following linear set of equations:

αjM11 = M21,(j−n) , j = n + 1, .., ñ (3.12)

where M21,(i) denotes the ith row of M21. Since M11 is invertible, the coefficients can be
computed easily. Moreover, if we collect the row vectors αj into a coefficient matrix L:

L =




αn+1
...

αen 
 (3.13)

we can get the coefficient matrix computed in a more compact form:

L = M21M
−1
11 (3.14)
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Having determined the coefficients from Eq. (3.10), we can derive a linear set of equations
relating the time derivative of the corresponding state variables in x̃:

˙̃xj =
n∑

k=1

αjk
˙̃xk , j = n + 1, .., ñ

Finally we can conclude that there is a linear dependence of the corresponding state variables
by integrating the equations above:

x̃j = ϕj +
n∑

k=1

αjkx̃k , j = n + 1, .., ñ (3.15)

Since our DAE system is linear (and homogeneous), ϕj = 0 , j = n + 1, . . . , ñ. Observe
that the above equations are algebraic equations in the transformed variables.

Finally we can construct the DAE form of the transformed ODE model in Eq. (3.9)
by leaving the first n ODEs unchanged but replacing the remaining ODEs by the algebraic
equations in Eq. (3.15). This way we can obtain the DAE form of any transformed ODE
originating from a DAE model. This form can be regarded as a DAE canonical form

of a non-minimal linear ODE model.
The DAE canonical form of a hidden DAE system is unique if one chooses and fixes the

n independent rows of the coefficient matrix Â.

3.1.2 From hidden linear DAE systems to DAE canonical form

models

Non-minimal linear ODE models can be transformed into DAE canonical form as described
in the previous section. The resulting algebraic equations are explicit in their variables, so
they can be substituted into the differential equations leading to a minimal ODE form of
a linear non-minimal ODE model.

Transformation to DAE canonical form This substitution can be performed in one
step by using a linear transformation as follows. With the help of Eqs (3.10) and (3.13), the
linear model in Eq. (3.9) can be written in the following form:

d

dt

[
x̃P1

x̃P2

]
=

[
Â1 Â2

LÂ1 LÂ2

] [
x̃P1

x̃P2

]
(3.16)

where

x̃P1 =




x1
...

xn


 , x̃P2 =




xn+1
...

xen 


are partitions of vector x̃.
Let us apply the following transformation matrix to Eq. (3.16):

Tmin =

[
In×n 0n×d

−Ld×n Id×d

]
(3.17)

It transforms our system to
[

˙̃xP1

0

]
=

[
Â1 + Â2L Â2

0 0

] [
x̃P1

ϕP2

]
(3.18)



Research Report SCL-004/2004 20

where the vector ϕP2 is built of ϕj-s in Eq. (3.15):

ϕP2 =




ϕn+1
...

ϕen 


Since the second row is equal to zero, only the first row has to be considered, therefore
the system can be written in the following form:

˙̃xP1 = Â2ϕP2 + (Â1 + Â2L)x̃P1 (3.19)

Note that ϕP2 is unambiguous for given initial conditions:

ϕP2 = x̃P1(t0) − Lx̃P2(t0) (3.20)

and it equals zero if our model is linear (because of homogeneity).
This way we get to the minimal realization of the model in Eq. (3.9) which is equivalent to

the original one and has been generated by the transformation which expresses the dependent
(algebraic) variables in terms of the independent (differential) variables and then substitutes
them into the differential equations. Moreover, this minimal model is unambiguous for given
initial conditions.

3.2 Form Invariance of QP-DAE models

The method of retrieving algebraic equations from a non-minimal QP-ODE model is far from
being trivial. Symbolic algebraic methods are applied in [2] to construct nonlinear invari-
ant manifolds (that correspond to the algebraic relationships between the system variables)
for the 3-5 dimensional cases. Necessary conditions for the existence of quasi-polynomial
invariants are presented in [3] that can be constructed recursively from the low dimensional
cases.

The form invariance and the retrieval of the algebraic equations of QP-DAE models is
investigated in this section by using the QP-ODE form of QP-DAE models and the known
form invariance results derived therefor.

3.2.1 The Lotka-Volterra ODE form

Similarly to the case of QP-ODEs, the Lotka-Volterra form of a QP-DAE can be regarded
as a canonical form representing the whole class of QM-transformation invariant models.
For this we recall that the QP models that have the same invariants M , Λ and Q form an
equivalence class that may contain both QP-ODE and QP-DAE models.

The Lotka-Volterra form of a QP model equivalence class can be derived in two alternative
ways. We may extend the variable vector with constant elements or we may use the quasi-
monomials as new variables.

Extension to the m = n (square) case Note that in the general case m ≥ n, i.e.
the number of quasi-monomials is greater or equal to the number of variables. This implies
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that there are quasi-monomial type relationships between some (m − n) quasi-monomials
(see [5]). To show this, we partition the vector of quasi-monomials as follows:

Q =




Qp

−−−
Qs




with dim(Qp) = n such that the n × n block Bp in the partitioned B matrix is of full rank.
From 


Q∗

p

−−−
Q∗

s


 =




Bp

−−−
Bs


X∗

we get

Q∗
p = BpX

∗ (3.21)

Q∗
s = BsX

∗ (3.22)

which gives the connection between the two sets of monomials:

Q∗
s = BsB

−1
p Q∗

p (3.23)

Moreover, we can formally extend the variable vector X of dimension n with m−n constant
1-s, to get

χ =




X

−−−
1
...

1




to form a square version of the original compact logarithmic form of the QP-ODE model as



0
Q∗

p

Q∗
s


 = BSQ ·

[
X∗

0

]
=




0 0
Bp 0
Bs I



[

X∗

0

]
(3.24)

χ̇∗ = ASQ ·




1
Qp

Qs


 =

[
λ Ap As

0 0 0

]


1
Qp

Qs


 (3.25)

The Lotka-Volterra form of the original QP-ODE can now be obtained by QM-transforming
the m-dimensional extended variable vector χ with the square invertible matrix

C =

[
Bp 0
Bs I

]−1

The quasi-monomials as new variables The Lotka-Volterra form of a QP-ODE or
QP-DAE model is formed by choosing the quasi-monomials to be the system variables, i.e.

U̇i = Ui(Λi +
m∑

j=1

MijUj), i = 1, . . . ,m (3.26)

with Ui = Qi. The parameters of the Lotka-Volterra form are exactly the invariants of the
QP model class, being Λ and M .

It is important to note that the Lotka-Volterra form is a special QP-ODE in itself with
A = M and B = I and thus it is a set of quadratic ODEs.
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Algebraic dependencies between the quasi-monomials Recall the number of the
quasi-monomials m, that is, the number of the differential variables in the Lotka-Volterra
form, is greater than or equal to the number of the original differential variables n. This
implies that the Lotka-Volterra form is a hidden QP-DAE, which is indicated by the fact that
M is generally not of full rank. Equation (3.23) gives the QM-type algebraic relationships
between the first n and the remaining (m − n) quasi-monomials.

3.2.2 Retrieving the QM-type algebraic equations from the Lotka-

Volterra ODE form model

It is important to recall that a Lotka-Volterra ODE form can be regarded as a special non-
minimal hidden QP-DAE in the general m > n case where BLV = I and ALV = M . Thus
the LV parameter matrix M will now be rank-deficient such that rank M ≤ n.

This allows us to retrieve algebraic equations between the variables generated by the
linearly-dependent rows

Mj , j = n + 1, ..., n + d

of the coefficient matrix in the same way as in the case of the transformed linear DAEs in
section 3.1.

Using the same derivation as in section 3.1 we can retrieve the QP-DAE algebraic equa-
tions in the following form:

x̃∗
j = ϕj +

n∑

k=1

αjkx̃
∗
k , j = n + 1, .., n + d (3.27)

This gives rise to QP-type (quasi-monomial) algebraic equations in the original variables:

xj = ϕj ·
n∏

k=1

(xk)
αjk , j = n + 1, .., n + d (3.28)

It is important to observe that there may be new quasi-monomials in the retrieved QP-
algebraic set of equations compared to the original Lotka-Volterra ones.

Note that with the method above we can retrieve a part of the hidden algebraic equations,
if they are in the form of Eq. (3.28). Such equations are used when creating the Lotka-
Volterra form of a QP-DAE or QP-ODE model.

Example 1 (continued) Let us consider the LV-ODE form of Example 1, with its
matrix invariant M :

ẋ =




0 0 0 0 0 0 0 0 0 0
15 9 12 0 90 36 48 105 16 56
4 0 0 14 0 0 0 0 0 0
5 3 4 0 450 180 240 525 80 280
30 12 16 35 −90 −36 −48 −105 −16 −56
45 21 28 35 0 0 0 0 0 0
34 12 16 49 −90 −36 −48 −105 −16 −56
35 15 20 35 360 144 192 420 64 224
4 0 0 14 −90 −36 −48 −105 −16 −56
9 3 4 14 360 144 192 420 64 224




x (3.29)
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Denote the jth row of M by Mj. If one follows the retrieval algorithm above, then one can
observe that the rows {M2,M3,M4} are linearly independent, giving a basis to reproduce
the rows {M5, . . . ,M10} as their linear combination (M1 is assigned to the known monomial
’1’, which there is no need to retrieve). The linearly combining matrix L can be computed
easily:

L =




1.5 2.5 −0.5
2.5 2.5 −0.5
1.5 3.5 −0.5
1.5 2.5 0.5

0.0714 1 −0.2143
0.0714 1 0.7857




(3.30)

and the algebraic relationships can be given therefrom:

x̃∗
j = ϕj +

4∑

k=2

αjkx̃
∗
k , j = 5, . . . , 10 (3.31)

where αjk can be given from the elements of L:

αjk = L(j−4,k−1) , j = 5, . . . , 10, k = 2, . . . , 4

From this, we finally get the monomial relationships:

xj = ϕj ·

4∏

k=2

(xk)
αjk , j = 5, . . . , 10 (3.32)

where ϕj, j = 5, . . . , 10 can be computed from initial conditions.
Thus, the resulting DAE model has LV differential equations complemented with QM-

type algebraic relationships:

x1 = 1 (3.33)

dx2

dt
= x2

(
15x1 + 9x2 + 12x3 + 90x5 + 36x6 + 48x7 + 105x8 + 16x9 + 56x10

)
(3.34)

dx3

dt
= x3

(
4x1 + 14x4

)
(3.35)

dx4

dt
= x4

(
5x1 + 3x2 + 4x3 + 450x5 + 180x6 + 240x7 + 525x8 + 80x9 + 280x10

)
(3.36)

x5 = ϕ5 · x
1.5
2 · x2.5

3 · x−0.5
4 (3.37)

x6 = ϕ6 · x
2.5
2 · x2.5

3 · x−0.5
4 (3.38)

x7 = ϕ7 · x
1.5
2 · x3.5

3 · x−0.5
4 (3.39)

x8 = ϕ8 · x
1.5
2 · x2.5

3 · x0.5
4 (3.40)

x9 = ϕ9 · x
0.0714
2 · x1

3 · x
−0.2143
4 (3.41)

x10 = ϕ10 · x
0.0714
2 · x1

3 · x
0.7857
4 (3.42)

where the constants ϕ5, . . . , ϕ10 are determined by the initial conditions of the model.

3.3 Retrieving the QP-type algebraic equations

In this section we show two algorithms for the retrieval of QP-type algebraic equations. The
first is based on considering the parameter matrices A and B of the QP model together. The
second tries to find first integrals of the system. Both algorithms contain heuristic steps.
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3.3.1 Generalized QM retrieval algorithm

Unfortunately, only the QM-type algebraic equations can be retrieved by the approach pre-
sented in the previous section. Therefore, we have made an investigation on how one could
generalize it to retrieve a broader class, namely when a variable is a quasipolynomial of the
other variables.

For this purpose, we present an algorithm with heuristic elements giving back these
relationships.

1. Construct the A and B matrices of the QP model sequentially, i.e. by starting with the
first quasimonomial (QM) in the first differential equation, and finishing with the last
QM in the last differential equation. Include the QM ′1′ (instead of using the vector
λ). Observe that A is a lower block-triangular matrix because of the way it has been
built.

2. If A is not of full rank, then apply the previously presented algorithm, substitute the
algebraic relationships you got, and then re-start this algorithm.

3. If A is not block-diagonal then duplicate those QMs with coefficients in the non-
diagonal parts. If this step is done, the modified (expanded) A matrix is block-diagonal.
Denote the diagonal elements of A (which are row vectors) with arowi

, i = 1, . . . ,m,
and their corresponding B matrix partitions by Bi , i = 1, . . . ,m.

4. Reproduce - if it is possible - arowj
in the form:

arowj
= [M1 | M2 | . . . | Mℓ] =

=

[
m∑

i=1,i6=j

c1
i a

1
rowi

∣∣∣
m∑

i=1,i6=j

c2
i a

2
rowi

∣∣∣ . . .
∣∣∣

m∑

i=1,i6=j

cℓ
ia

ℓ
rowi

]
(3.43)

where c1
i , . . . , c

ℓ
i , i = 1, . . . ,m are constants, while ak

rowi
, i = 1, . . . ,m, k = 1, . . . ℓ

denote rows made from arowi
, i = 1, . . . m by permutating its elements, and by possible

insertion of additional zero entries.

Denote their accordingly arranged Bi matrices by Bk
i , i = 1, . . . m, k = 1, . . . ℓ (zero

rows are inserted in the appropriate places).

5. Now construct the matrix

B∗
j = Bj −




∑m

i=1,i6=j B1
i∑m

i=1,i6=j B2
i

...∑m

i=1,i6=j Bℓ
i


 =




N1

N2

...
N ℓ


 (3.44)

If all Nk, k = 1, . . . ℓ have identical rows in the form of αk = [αk
1, α

k
2, . . . ,−1, . . . , αk

m]
with their j-th columns containing −1 elements, then the algebraic relationship is of
quasi-polynomial type and can be given explicitly:

xj = c0 +
ℓ∑

k=1

ck ·

m∏

i=1, i6=j

x
αk

i

i (3.45)

with the coefficients ck =
c
nk
k

α
nk
k

, k = 1, . . . , ℓ and nk ∈ {1, 2, j − 1, j + 1,m} are integers

such that αnk

k 6= 0 , k = 1, . . . , ℓ. The coefficient c0 can be computed from initial
conditions.
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3.3.2 The method of first integrals

In the previous section, an algorithm has been presented to retrieve explicit QP-type al-
gebraic equations. Now we present another method, which is moreover capable to find
monomial explicit algebraic relationships.

Take a look at the following QP-DAE model with n differential equations and a single
explicit algebraic relationship:

ẋ = f(x) , x ∈ R
n (3.46)

z = p(x) , z ∈ R (3.47)

where p(x) is a (quasi)polynomial of x. This model can be written in an n + 1 dimensional
QP-ODE form, by simply taking the time-derivative of z:

ẋ = f(x) (3.48)

ż =
∂p

∂x
f(x) =

n∑

i=1

∂p

∂xi

fi(x) (3.49)

Now we will show that there exists a first integral of this system which is a function of x

and z. Search for this first integral in the form λ(x, z) = c, and take its time-derivative:

dλ

dt
=

∂λ

∂x
ẋ +

∂λ

∂z
ż =

∂λ

∂x
f(x) +

∂λ

∂z

∂p

∂x
f(x) = 0 ,

∂λ

∂x
= gradλ ∈ R

1×n (3.50)

This can be simplified to
∂λ

∂x
+

∂λ

∂z

∂p

∂x
=
[
0 . . . 0

]
∈ R

1×n (3.51)

which is a set of n equations. It is easy to show that

λ(x, z) = z − p(x) ∈ R
n (3.52)

is a solution of this PDE, since

∂λ(x, z)

∂x
+

∂λ(x, z)

∂z

∂p

∂x
= −

∂p

∂x
+ 1

∂p

∂x
= 0 (3.53)

therefore λ(x, z) is a first integral of the system. It means that

z = p(x) + c (3.54)

therefore we retrieved our original algebraic equation, where c = 0 according to the initial
conditions [x(t0), z(t0)]

T .

Experience has shown us that finding the solution is not so simple in most cases, since
∂p

∂x
is a row vector and p(x) is made of an arbitrary number of monomials, therefore the

time-derivative of z can maximally contain ℓ × mx monomials, where ℓ denotes the number
of monomials in p(x), while mx is the number of the monomials in the differential equations
for x. However, if p is an arbitrary polynomial of one variable: p(x) = p(xk) for some k then
the solution is immediately given:

p(xk) =

∫
ż

ẋk

dxk (3.55)
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If p depends on more than one variable, then a good way is to search for those parts on
the RHS of ż which, if they are divided by the RHS of some ẋk, give monomials without
remainder:

parti

ẋk

= monomial(x) (3.56)

These monomials (more exactly, their integrals with respect to xk) will constitute the solution
p(x), if ż =

∑
i parti is fulfilled.

Example 2 (continued) Consider the QP-ODE model in Eqs. (2.66-2.68). This is the
case when z = p(x) depends on only one variable xk, and therefore there is a relationship
ż = poly(x)ẋk where poly(x) is a polynomial. It is easy to see that

µ̇ = 2SṠ (3.57)

From this, the original algebraic equation can be easily retrieved:

µ =

∫
µ̇

Ṡ
dS =

∫
2S dS = S2 + c (3.58)

where c = 0 comes from the initial conditions of the model.

Example 1 (continued) Recall the QP-ODE model of this system in Eqs. (2.62-2.64):

ẋ1 = x1(5 + 3x3
1x3 + 4x2

2) (3.59)

ẋ2 = x2(2 + 7x1x
5
3) (3.60)

ẋ3 = x3(90x4
1x

5
2x

−1
3 + 36x7

1x
5
2 + 48x4

1x
7
2x

−1
3 + 105x5

1x
5
2x

4
3 + 16x2

2x
−1
3 + 56x1x

2
2x

4
3) (3.61)

Consider the last equation of the model - it contains the largest number of monomials,
therefore this would be the differential equation coming from the time-differentiation of a
polynomial in the form x3 = p(x1, x2). Now try to find parts of the RHS of ẋ3 which can be
divided by some ẋk without remainder. Observe that

x3(90x4
1x

5
2x

−1
3 + 36x7

1x
5
2 + 48x4

1x
7
2x

−1
3 )

x1(5 + 3x3
1x3 + 4x2

2)
(3.62)

has a remainder, but

x3(60x4
1x

5
2x

−1
3 + 36x7

1x
5
2 + 48x4

1x
7
2x

−1
3 )

x1(5 + 3x3
1x3 + 4x2

2)
= 12x3

1x
5
2 =

part1

ẋ1

(3.63)

gives a monomial without remainder, therefore 30x4
1x

5
2 should be used elsewhere. Indeed,

x3(30x4
1x

5
2x

−1
3 + 105x5

1x
5
2x

4
3)

x2(2 + 7x1x
5
3)

= 15x4
1x

4
2 =

part2

ẋ2

(3.64)

For the remaining monomials,

x3(16x2
2x

−1
3 + 56x1x

2
2x

4
3)

x2(2 + 7x1x
5
3)

= 8x2 =
part3

ẋ2

(3.65)
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is true. Since ẋ3 = part1 + part2 + part3 we have found the partial derivatives of the
monomials of p(x1, x2). Take the integrals of these three monomials with respect to the
appropriate variables:

∫
12x3

1x
5
2dx1 =

∫
15x4

1x
4
2dx2 = 3x4

1x
5
2 + c1 (3.66)

∫
8x2dx2 = 4x2

2 + c2 (3.67)

Thus, the polynomial we searched for can be written in the form

x3 = p(x1, x2) = 3x4
1x

5
2 + 4x2

2 + c (3.68)

which is exactly the algebraic equation of the original QP-DAE model in Eq. (2.8) with
appropriate initial conditions.

3.3.3 Retrieving monomial-explicit algebraic equations

In this section we focus on the retrieval of algebraic equations in the form

z = pα(x) , z ∈ R (3.69)

These equations are QP-algebraic equations, since they can be written in monomial-explicit
form:

z
1
α = p(x) (3.70)

and - if their substitution spoils the QP format - they are treated by embedding. Consider
the DAE model described by Eqs. (3.46,3.69). Equation (3.69) is embedded in order to have
a QP-ODE representation:

ż = αpα−1(x)
∂p

∂x
ẋ = αz

α−1
α

∂p

∂x
f(x) (3.71)

As we will see, the variables x, z of this QP-ODE model in Eqs. (3.46,3.71) form a first
integral λ(x, z) = c. Take the time derivative of λ:

dλ

dt
=

∂λ

∂x
ẋ +

∂λ

∂z
ż =

∂λ

∂x
f(x) +

∂λ

∂z
αz

α−1
α

∂p

∂x
f(x) = 0 (3.72)

This PDE can be written as

∂λ

∂x
+

∂λ

∂z
α
(
z

1
α

)α−1 ∂p

∂x
= 0 (3.73)

One can easily check that
λ(x, z) = z

1
α − p(x) = c (3.74)

is a solution of this PDE from which the original algebraic equation is retrieved in its
monomial-explicit form in Eq. (3.70) with appropriate initial conditions.

The retrieval of embedded variables play an important role in process systems analysis,
since a special case, when α = −1 is used in describing global reaction rates in the sys-
tem, because the reaction rate equations are rational functions with quasipolynomials in the
denominator. In this case, the embedded variable is

z = p−1(x) (3.75)
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and the differential equation for z is in the following form:

ż = −z2

n∑

i=1

∂p

∂xi

ẋi = z
(
− z

n∑

i=1

∂p

∂xi

ẋi

)
(3.76)

In general, it is much easier to explore an algebraic relationship of this kind, because of the
multiplier −z in the monomials of ż. Since the elements of the gradient ∂p

∂x
are independent

of z, the powers of z in the monomials of ż will be increased by one compared to the cor-
responding monomials in ẋi. Moreover, there is another connection between the coefficients
of these monomials: they have opposite sign (but have the same absolute value). It can also
be indicated if the monomials of some ẋk do not turn up in ż. This is because ∂p

∂xk
= 0 and

means that p(x) does not depend on xk. This makes the retrieval easier.
To retrieve an algebraic equation of this type, one just simply applies the method of first

integrals, with one modification: all integrals have to be multiplied by −z−2, i.e. if

∂parti

∂xki

= monomiali(x, z)

and
ż =

∑

i

parti

then

p(x) =
∑

i

∫
−z−2monomiali(x, z)dxki

Example: A continuous fermentation process with fractional reaction kinetics
Consider now the QP-DAE model of a continuous fermentation process with non-

monotonous reaction kinetics:

Ẋ = X(−
F

V
+ Sµ) (3.77)

Ṡ = S(−
F

V
+

SF F

V
S−1 −

1

Y
Xµ) (3.78)

µ−1 = k1 + S + k2S
2 (3.79)

This model is in monomial-explicit form, from which one can obtain a QP-ODE model by
expressing µ and taking its time-derivative:

µ̇ =
d

dt
(

1

k1 + S + k2S2
) = −(

1

k1 + S + k2S2
)2(1 + 2k2)Ṡ = −µ2(1 + 2k2S)Ṡ (3.80)

The resulting model is a QP-ODE:

Ẋ = X(−
F

V
+ Sµ) (3.81)

Ṡ = S(−
F

V
+

SF F

V
S−1 −

1

Y
Xµ) (3.82)

µ̇ = µ(
F

V
Sµ + 2k2

F

V
S2µ −

SF F

V
µ − 2k2

SF F

V
Sµ +

1

Y
XSµ2 +

2k2

Y
XS2µ2) (3.83)

Now let’s try to retrieve the algebraic equation! The coefficients of monomials in the third
differential equation turn out in the second differential equation, but with an opposite sign
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- it is correct. The connection between the monomials is also fulfilled, the monomials in the
third equation have powers of z increased by one compared to the corresponding monomials
in the second equation. Therefore our algebraic relationship would be in the form:

µ =
1

p(S)
(3.84)

Since p depends on a single variable, it can be retrieved directly:

p(S) =

∫
µ̇

Ṡ
· (−µ−2) = dS =

∫
2k2S + 1 dS = k2S

2 + S + c (3.85)

where c = k1 comes from appropriate initial conditions.

3.4 Canonical forms of QP-DAE models

Here we summarize the two previously introduced canonical forms for QP-DAE models that
will be used for further analysis.

DAE canonical form of QP-DAEs The usual form of QP-DAE models

ẋi = xi

(
λi +

m∑

j=1

Aij

n∏

k=1

x
Bjk

k ·
d∏

k=1

z
Bj(n+k)

k

)
, (3.86)

i = 1, . . . , n,

0 = zk

(
λn+k +

m∑

j=1

A(n+k)j

n∏

ℓ=1

x
Bjℓ

ℓ ·
k−1∏

ℓ=1

z
Bj(n+ℓ)

ℓ

)
, (3.87)

k = 1, . . . , d, m ≥ (n + d)

where the parameters A and B of the model are (n + d) ×m and m × (n + d) real matrices
and λ ∈ R

(n+d) is a real vector, is called a DAE canonical form if both the blocks Ax for the
rows corresponding to the differential variables and Az for the algebraic variables are of full
rank.

Example 1 (continued) Let us consider the QP-DAE of Example 1. It is easy to
check that its DAE form in Eqs. (2.9) - (2.11) is in the canonical QP-DAE form. Defining
the set of differential (x = [x1, x2]

T ) and algebraic (z = x3) variables, and using that z is
positive, we get the following QP-DAE model:

ẋ1 = x1(5 + 3x3
1z + 4x2

2) (3.88)

ẋ2 = x2(2 + 7x1z
5) (3.89)

0 = z(3x4
1x

5
2 + 4x2

2 − z) (3.90)

which is indeed in the form of Eqs. (3.86-3.87).

LV-ODE form of QP-DAE models The previously introduced (see Eq. (3.26)) form
of QP-DAE models

U̇i = Ui(Λi +
m∑

j=1

MijUj), i = 1, . . . ,m

is a LV-ODE form with the following properties. It is
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• a quadratic nonlinear model,

• rank-deficient M for the general m > n case

• a special QP model with A = M and B = I.

The results in the earlier sections together with the LV-form of a QP-DAE model show
that

1. It is possible to transform a QP-DAE model into LV form similarly to the case of
QP-ODEs (using C = B−1), but the resulting transformed model will be a LV-ODE,
i.e. the algebraic equations formally disappear and the resulting coefficient matrix
M = ÃLV will be rank deficient.

2. We can retrieve the algebraic equations from the LV-ODE form of a QP-DAE, but
then the algebraic equations will not necessarily be in a LV form (i.e. with at most 2nd
order terms).



Chapter 4

The steady-states of QP models

The number and properties of steady-states of QP models (QP-ODE or QP-DAE) char-
acterize their type of nonlinearity. Generally speaking, one may call a model with single
isolated steady-states more nonlinear if it has more steady-states with different local stabil-
ity properties. As we shall see in this section the maximal possible number of single isolated
steady-sates of a QP model is equal to the difference between the number of quasi-monomials
and that of the variables.

The determination of steady-state points of a QP model is performed in two logical steps.

1. Construction of a QP algebraic (QP-AE) model by equating the time derivatives of
the differential variables to zero.

2. Solution of the resulting QP-AE.

4.1 Full rank m = (n + d) case

If the number of quasi-monomials is equal to the number of variables, then both A and B are
square. The QP-AE to be solved for the steady-states in its logarithmic form is as follows:

0 = λ + AQss (4.1)

Q∗
ss = BX∗

ss (4.2)

It is important to note that a necessary condition to get any admissible solution (i.e. a
solution in the positive orthant) is that Eq. (4.1) possesses an element-wise positive solution.

With invertible (full rank) A and B we get a unique solution that is not necessarily
admissible:

Qss = −A−1λ

X∗
ss = B−1Q∗

ss

Full rank LV-case: In the rare case when the Lotka-Volterra coefficient matrix ALV =
M = BA is of full rank (that implies that both A and B should be of full rank) and BLV = I

is also of a full rank, the above equations become

Uss = Qss = −M−1Λ (4.3)

This also means that we have a unique solution and at most a single unique admissible
steady-state.

31
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4.2 Rank-deficient cases

In the general case, however, m ≥ (n+d) and rank M = rank (BA) ≤ (n+d). That means,
that the linear equation

0 = λ + AQss

will not have a unique solution. Then, the vector of quasimonomials and accordingly the
parameter matrices A and B can be partitioned as:

A =
[

Ap As

] [ Qp,ss

Qs,ss

]
,

[
Q∗

p,ss

Q∗
s,ss

]
=

[
Bp

Bs

]
X∗

ss (4.4)

This gives a set of solutions forming a linear subset of R
m that is constrained by the m−(n+d)

nonlinear algebraic relationship between the quasimonomials:

0 = λ + ApQp,ss + AsQs,ss containing (n + d) equations (4.5)

Qs,ss = BsB
−1
p Qp,ss containing (m − (n + d)) equations (4.6)

even if both the matrices A and B are of full rank (n + d).

Example 1 (continued) The parameter matrices of the DAE model of this example
can be partitioned in the following way:

A =




3 4 0 0 0
0 0 7 0 0
0 4 0 3 −1


 , B =




3 0 1
0 2 0
1 0 5
4 5 0
0 0 1




(4.7)

for which Eqs. (4.5-4.6) are in the following form:



0
0
0


 =




5
2
0


+




3 4 0
0 0 7
0 4 0


Qp,ss +




0 0
0 0
3 −1


Qs,ss (4.8)

Q∗
s,ss =

[
4 5 0
0 0 1

]


3 0 1
0 2 0
1 0 5




−1

=

[
10
7

5
2

−2
7

− 1
14

0 3
14

]
Q∗

p,ss (4.9)

where

Qp,ss =




x3
1,ssx3,ss

x2
2,ss

x1,ssx
5
3,ss


 , Qs,ss =

[
x4

1,ssx
5
2,ss

x3,ss

]
(4.10)

The linear set of equations has a solution in the form of a two-dimensional subset, which is
constrained by the two nonlinear equations.

In order to see what happens to the number of possible steady-state points, let us consider
the LV form of the QP-ODE or QP-DAE in question. Then the equation to be solved for
finding the steady-state points is

0 = Λ + MUss (4.11)

but now rank M ≤ (n + d) ≤ m. Thus the steady-state points will be on an m − n − d

dimensional linear subspace of R
m constrained by the generally nonlinear algebraic relation-

ships between the quasi-monomials, that is the LV variables, that are coded in the linear
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dependence of m−n−d rows of M on the linearly independent ones. In the extreme case we
may then obtain m− n− d different isolated solutions of Eq. (4.11) as possible steady-state
points. This system has no admissible steady states.

Example 3 Let us consider a simple one-dimensional example

ẋ = x · (x3 − 3x2 + 2x) = x2(x − 2)(x − 1)

q1 = x , q2 = x2 , q2 = x3

that has 3 different steady-states (two admissible ones): x = 0, x = 1, x = 2. The number
of variables is n = 1 and the number of quasi-monomials is m = 3.

The LV-form of the model is

q̇1 = q1 · (q3 − 3q2 + 2q1)
q̇2 = 2q2 · (q3 − 3q2 + 2q1)
q̇3 = 3q3 · (q3 − 3q2 + 2q1)

, M =




1 −3 2
2 −6 4
3 −9 6




If one solves the related steady-state algebraic set of equations it is easy to see, that it
has infinitely many different steady-states on the plane

(q3 − 3q2 + 2q1) = 0

that is a 2-dimensional linear subspace of the 3-dimensional space.
In order to retrieve the nonlinear algebraic relationships between the quasi-monomials,

we transform the equations to their minimal form by

1. retrieving the QM-type algebraic equations, and then

2. substitution

Using the LV form of the simple one-dimensional example we perform the following steps.

• rank M = 1, take the first row

• 2nd row = 2 · (first row): q̇∗2 = 2q̇∗1 =⇒ q∗2 = 2q∗1 + C1 =⇒ q2 = C1q
2
1

• 3rd row = 3 · (first row): q̇∗3 = 3q̇∗1 =⇒ q∗3 = 3q∗1 + C2 =⇒ q3 = C2q
3
1

Thus the steady-state points can be obtained as the intersection of the equations

(q3 − 3q2 + 2q1) = 0 , q2 = C1q
2
1 , q3 = C2q

3
1

that gives 3 points, 2 in the admissible domain.

4.3 Local stability of the steady-state points

The Jacobian matrix of a QP-ODE system at a steady-state point xss can be computed from
the system matrices A,B and the equilibrium point.

JQP (xss) = Xss · A · Qss · B · X
−1

ss , (4.12)

where
Xss = diag([x1,ss, . . . , xn,ss]),
Qss = diag([q1,ss, . . . , qm,ss])
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where qj,ss, j = 1, ...,m are the quasi-monomials of the system in the equilibrium xss.

JQP (xss) =




∑m

j=1 A1jBj1qj,s . . .
x1,ss

xn,ss

∑m

j=1 A1jBjnqj,ss

...
. . .

...

xn,ss

x1,ss

∑m

j=1 AnjBj1qj,ss . . .
∑m

j=1 AnjBjnqj,ss




(4.13)

It is important to observe that the Jacobian matrix above is an n × n matrix and thus can
have at most n different non-zero eigenvalues in the optimal full-rank A and B case.

It is also important to know that the above QP-Jacobian matrix is not invariant with
respect to QM-transformation, but its eigenvalues are. To show this, transform the system
with an invertible QM transformation

X
i
=

n+d∏

k=1

X̂Cik

k
, i = 1, . . . , n (4.14)

where C is an arbitrary (n+d)× (n+d) invertible matrix. The effect of this transformation
on the logarithmic variables at the steady state is

x̂∗
ss = C−1x∗

ss

which can be written in the form

x̂ss = exp(C−1x∗
ss)

where exp(v) denotes element-wise exponential of vector v. Using the well-known effect of
QM transformation on the parameter matrices and monomials:

Q̂∗ = Q∗ , B̂ = B · C , Â = C−1 · A ,

the Jacobian of the transformed QP system can be written as:

Ĵ∗
QP (x̂ss) = X̂ss · Â · Q̂ss · B̂ · X̂

−1

ss =

= exp(C−1x∗
ss) · C

−1 · A · Qss · B · C ·
(
exp(C−1x∗

ss)
)−1

=

= exp(C−1x∗
ss) · C

−1 · X
−1

ss · Xss · A · Qss · B · X
−1

ss · Xss · C ·
(
exp(C−1x∗

ss)
)−1

=

=
(
exp(C−1x∗

ss) · C
−1 · X

−1

ss

)
· J∗

QP (xss) ·
(
exp(C−1x∗

ss) · C
−1 · X

−1

ss

)−1

=

= T · J∗
QP (xss) · T

−1 (4.15)

where v denotes the diagonal matrix made of the components of vector v.
As we can see, we get the Jacobian of the transformed system by a similarity transfor-

mation T applied to the Jacobian of the original system, and therefore the eigenvalues are
preserved.

Jacobian matrix of QP models in LV form It can be shown [7] that the Jacobian
matrix of the Lotka-Volterra form model is

JLV (Uss) = Mdiag(Uss) (4.16)
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where M = ALV and Uss is the solution of the steady state LV-AE equation

0 = Λ + MUss

Since the matrix M has maximal rank n ≤ m, the LV-Jacobian matrix above is an m × m

matrix with maximal rank n, and therefore it has (m − n) distinct zero eigenvalues. The
other (generally nonzero) eigenvalues, however, are identical with those of the QP-Jacobian
matrix.



Chapter 5

Conclusions and future work

Various algebraically equivalent forms of index 1 QP-DAE models that are of importance for
lumped process models are suggested in this work. These are the DAE canonical form and the
LV-ODE form with a rank-deficient coefficient matrix. Form invariance and transformations
for obtaining these forms from each other are also discussed.

The retrieval of the hidden algebraic equations from a non-minimal QP-ODE form of a
QP-DAE model is also considered. The suggested algorithms can only retrieve special classes
of QM or QP algebraic equations.

Further work will be directed to the use of these forms and the form invariants for
computational and dynamic analysis of QP-DAE systems.
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