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Abstract

The report presents mathematically well grounded statistical methods for state estimation
in the indirect measurement setting, when the measurement is performed on an ancilla
system that is put into interaction with the unknown one.
The considered measurement scheme is the simplest possible discrete time case, where
both the unknown and the ancilla quantum systems are quantum bits. The measurements
applied on the ancilla qubit are the classical von Neumann measurements using the Pauli
matrices as observables. The repeated measurements performed on the ancilla enables us
to construct estimators of the initial state of the unknown system. Based on the statistical
properties of the considered indirect measurement scheme [15], three related but different
approaches are proposed and investigated: (i) a direct estimation procedure that is based
on the estimated relative frequencies of the characterizing conditional probability densities,
(ii) Bayesian recursive approach for state estimation, and (iii) a martingale approach that
bases the estimator on the stopping times of the state evolution as a martingale driven by
the repeated measurements.
The statistical properties, i.e. the unbiasedness and the efficiency of the proposed proce-
dures are investigated both analytically and experimentally using simulation.
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Chapter 1

Introduction

It is well known that a projective measurement applied to a quantum system will change the
state of the measured system in an irreversible way depending on the measurement outcome
[11]. In addition, the probabilistic nature of the measurement result calls for applying a
state estimation (or state tomography) approach if one wants to have information about the
state of the quantum system.

Similarly to any realistic physical measurement, a quantum measurement is almost al-
ways realized by taking a measurement device that is put in interaction with the system
to be measured, and then to "read" the meter on the measurement device. In the macro-
scopic measurement situation the measurement device is "small" compared to the system
to be measured, thus the measurement back-action, i.e. the disturbance caused by the mea-
surement is negligible, but that is not the case in the quantum setting. In quantum state
estimation the above measurement configuration, when the ’unknown’ quantum system is
coupled with a ’measurement’ (also called ’ancilla’ ) system, and the measurements are only
applied on the ancilla system [6] is termed an indirect measurement scheme. In the field
of solid-state quantum bits a not fully realistic but conceptually simple model of indirect
projective measurement is when the measured qubit interacts with another (ancillary) qubit,
which is later measured in the "orthodox" projective way [10].

The notion of weak measurements is related to the notion of indirect measurements, but
approaches the measurement back-action problem in a different way. A weak measurement
[16, 4] is designed not to demolish the system state completely, i.e. the post-measurement
state still contains information about the original one, but on the price of a decreased in-
formation gained from the measurement. In the weak measurement setting the measured
variable has an effective interaction with the unknown one "in the limit of weak coupling"
thus minimizing the disturbance caused (and the information gained) by the measurement.

Besides of state estimation, weak measurements are used for other related tasks, such
as state purification or noise reduction combined with suitable feedback, see e.g. [1], [5].
In a particularly interesting paper Korotkov and Jordan [9] have shown that "it is possible
to fully restore any unknown, pre-measured state, though with probability less than unity"
for solid-state qubits and continuous time measurements. Recently, a similar approach for
reversing the weak quantum measurement for a photonic qubit has also been reported [8].

However, it is intuitively clear, that one must make a compromise between the information
gained in a measurement and the disturbance or demolition caused by it. The general
impossibility of determining the state of a single quantum system is proved in [2] whatever
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measurement scheme is used. This indicates that the efficiency or precision provided by
an indirect measurement scheme is necessarily smaller than that of a scheme that uses von
Neumann measurements.

The aim of this work is to propose mathematically well grounded statistical methods for
for state estimation for the indirect measurement setting and compare their efficiency to the
usual direct approaches.



Chapter 2

The investigated indirect measurement

scheme

The ingredients of the investigated indirect measurement scheme, the quantum system, the
observables, and the measurement strategy are described following the work [15].

2.1 State representation, interaction, time evolution and

observables

The investigated composite system consists of two qubits that are put into interaction, and
then a measurement is performed on one of them, termed the ancilla qubit.

State representation Throughout the paper the Bloch-vector representation of the states
of quantum bits is used. The system to be investigated consists of two qubits in interac-
tion: the unknown system (subscript S) and the ancilla (subscript M) qubits, their Bloch
representation is in the form

ρS(k) =
1

2
(I + θS(k)σS) , ρM(k) =

1

2
(I + θM(k)σM), (2.1)

where θS and θM are 3 dimensional real vectors, σS and σM are symbolic vectors constructed
from the Pauli operators acting on the Hilbert spaces HS and HM .

The state of the composite system is represented as a 4×4 density matrix ρS+M(k). The
state of the composite system after the interaction is given by

ρS+M(k + 1) = US+MρS+M(k)U∗
S+M (2.2)

where US+M is the overall system evolution unitary. Since we are interested in the dynamical
change of the system S, the first reduced density matrix should only be considered:

ρS(k + 1) = Tr1ρS+M(k + 1) = TrMρS+M(k + 1). (2.3)
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Interaction In order to have a simple parametrization of the interaction (coupling) be-
tween the unknown and ancilla qubits, the Cartan decomposition [7, 13] of the discrete time
evolution unitary US+M is used in the form

US+M = L1e
ahL2 (2.4)

where L1 and L2 are in SU(2) ⊗ SU(2) and a ∈ a with

a = i span{σS
1 ⊗ σM

1 , σS
2 ⊗ σM

2 , σS
3 ⊗ σM

3 } (2.5)

Because both L1 and L2 are in a product form, they describe the product of the local
dynamical effects LS

i and LM
i (i = 1, 2), and the interaction is parameterized by three real

parameters a1, a2 and a3.
Therefore, the dynamical equation of qubit S in (2.3) becomes

ρS(k + 1) = LS
1 TrM

(

eahρ̃S(k) ⊗ ρ̃M (k)ea∗h
)

LS∗
1 (2.6)

where L1 = LS
1 ⊗ LM

1 , L2 = LS
2 ⊗ LM

2 both time dependent, and ρ̃S = LS
2 ρSLS∗

2 , ρ̃M =
LM

2 ρMLM∗
2 . In order to simplify the forthcoming computations, we consider the case with

no local dynamics, when LS
i = LM

i = I (i = 1, 2).

Observables The most generally used von Neumann measurement is the measurement of
the Pauli operators σ1, σ2, or σ3. If one considers the measurement of the observable σ1,
then the possible outcomes are the different eigenvalues of the observable, i.e. ±1. The
probabilities of the different outcomes are

Prob(+1) = TrρE+1 = 1
2
(1 + θ1)

Prob(−1) = TrρE−1 = 1
2
(1 − θ1)

respectively, where the spectral decomposition of σ1 is σ1 = E+1 − E−1 with

E±1 = (I ± σ1)

2.2 Direct state estimation of qubits

The performance of the proposed methods in the indirect setting will be compared to that of
the direct state estimation methods using the same observables and projective measurements.

The most widespread and convenient method for estimating the state of a qubit is to
use direct measurements on multiple copies of identically prepared qubits. In our case this
corresponds to the situation when the measurements are performed on the unknown system.
The so called standard scheme applies the Pauli matrices σi, i = 1, 2, 3 as observables. Then
the estimator for the Bloch vector θS of the qubit is

Φ
n

=





2ν(n1, σ1, +1) − 1
2ν(n2, σ2, +1) − 1
2ν(n3, σ3, +1) − 1



 (2.7)
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when σi is measured ni times with the relative frequency of its +1 outcome ν(ni, σi, +1),
1 ≤ i ≤ 3. It can be shown that this estimate is unbiased and efficient.

The choice n1 = n2 = n3 = r constitute the so-called standard measurement scheme for
qubits whose mean quadratic error matrix is

V st
3r (θS) =

1

r





1 − θ2
S1 0 0

0 1 − θ2
S2 0

0 0 1 − θ2
S3



 . (2.8)

2.3 The measurement strategy

Indirect measurement means that the projective measurements are performed on the ancilla
system (being in state θM) attached to the one we are interested in (θS). In the composite
system (in state ρS+M) an indirect measurement corresponds to the observables of the form
I ⊗AM , where AM is a self adjoint operator on the Hilbert space of system M . For the sake
of simplicity, it is assumed, that AM is a Pauli spin operator.

Development:
h

θS(0)
Coupling:
ax,ay,azθM

Measurement:
Ι⊗σ� θS(k+1)

±1

Figure 2.1: Signal flow diagram of indirect measurement

The above described measurement strategy is shown schematically in Fig. 2.1. At each
time instant of the discrete time set, an ancilla qubit prepared in a known state is coupled
to the unknown system S. They evolve according to the bipartite dynamics (2.6) for the
sampling time h, and at the end of the sampling interval, a von Neumann measurement is
performed on the ancilla qubit. At the next time instant, the previous steps are repeated.

The parameters of the strategy The coupling parameters a1, a2, a3 of the Cartan de-
composition (2.4-2.5) determine how (in terms of strength and direction) the measurement
system is coupled to the unknown one. The sampling time h amplifies this effect and appears
as a multiplicative factor to the coupling parameters. The state of the ancilla qubit (θM )
can in principle be different at each time instant but we assume to use the same state for
the ancilla all the times.

It has been shown in [15], that the above parameters of the strategy can be chosen such
that a selective indirect scheme for estimating the second coordinate of the unknown qubit
state vector θS2. The effect of the interaction parameters and that of the ancilla qubit state
can then be collected in a constant 0 ≤ c ≤ 1.
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2.4 Mathematical problem statement

In this scenario let x(k) be the second coordinate of the Bloch vector of the unknown qubit
in the kth time step and c be a parameter that characterizes the state of the ancilla qubit.
Then [15]

x(k + 1) =











x(k)+c

1+cx(k)
, with 1+cx(k)

2
probability: + measurement

x(k)−c

1−cx(k)
, with 1−cx(k)

2
probability: - measurement











(2.9)

Note that if c = 1 then we obtain the direct standard measurement scheme, where

x(1) = ±1 , P rob(±1) =
1

2
(1 ± x(0)).

As shown in [14] all of the possible cases of states can be ordered in a line such a way,
that after each measurement we jump in the neighboring state on the left or right side:

· · · ⇄ x−3 ⇄ x−2 ⇄ x−1 ⇄ x0 ⇄ x1 ⇄ x2 ⇄ x3 ⇄ . . .

where x0=x(0). Hence, if two outcome sequences contain the same number of + and -
measurements, then the final state will be the same. With simple calculation it can be
shown that their probabilities will be the same, too.

Let us denote the number of + and - measurements by ℓ+ and ℓ−, respectively, and
d = ℓ+ − ℓ−. That is, the qubit will be in the state xd after ℓ+ + ℓ− time steps. If we denote
xd = zd

qd

with ℓ+ > ℓ−, then we can calculate the value of xd with the following induction

(zd, qd) → (zd + cqd, qd + czd) = (zd+1, qd+1) (2.10)

where z0 = x0 and q0 = 1. It is easy to see that zd and qd are linear in x0. Moreover if
zd = ad + bdx0, then qd = bd + adx0. Thus

xd =
ad + bdx0

bd + adx0
(2.11)

Similarly we get:

x−d =
−ad + bdx0

bd − adx0
(2.12)

where ad and bd are the same as in xd. They can be calculated using the recursion, and they
are polynomials of c.

It follows from the above properties that if we have the measurement record, that is,
the observed measurement outcomes (+1s and -1s) and know the parameter c then we can
calculate the state of the unknown qubit x(k) (= xℓ+−ℓ−) at any time instance from the
initial state x0. Therefore, the only meaningful problem statement is to estimate
the initial state x0 from the measurement record and from c.



Chapter 3

Conditional probability density function

approaches

Traditionally, maximum-likelihood (ML) or Bayesian estimation procedures are very popular
for quantum state estimation with compatible parametrization and distance [3]. Therefore,
it is straightforward to use them in the indirect setting, too.

3.1 A conditional histogram approach

A simple method that is based on the direct estimation of the conditional probabilities in
Eq. (2.9) is proposed in this subsection.

Let us assume to have a single copy of the unknown and ancilla qubit pair, and we have
collected the outcomes of a projective measurement on the ancilla qubit {y(k)|k = 1, ..., N}.
Let us fix the number of measurements N and the number of investigated systems states M ,
such that

k = 1, 2, ..., N ; N >> M

The systems starts from an unknown initial state x0 to be estimated.

3.1.1 The estimation procedure

Data collection The first step of the estimation procedure is to collect the conditional
relative frequencies νd of the "+1" measurement outcome to each considered relative systems
states, i.e. to compute the pairs

(νd, xd), d ∈ {−M, ...,−1, 0, 1, ...M} (3.1)

This can be simply done by counting the number of the +1 measurement outcome when the
system is in the state xd and dividing it by the number of times when the system is in xd.

Estimation The estimation is performed in three substeps.

(a) First we can construct an estimate for the relative states xd by using Eq. (2.9)

x̂d =
2νd − 1

c
(3.2)

8
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(b) Then we can use Eqs. (2.11) and (2.12) for d ≥ 0 and d < 0, respectively to derive
estimators for the unknown initial state x0

x̂
(d)
0 =

s · ad − bdx̂d

s · adx̂d − bd

=
s · adc − 2bdνd − bd

2s · adνd − s · ad − bdc
(3.3)

where s = sign(d).

(c) Finally, we can construct an overall estimate of x0 from the above estimates x̂
(d)
0 by

averaging them, for example.

Properties of the estimator The estimators from (3.3) are biased, because they are
nonlinear functions of the relative frequencies νd. The magnitude of the bias depends on the
parameters of the problem, i.e. on x0 and c.

Tuning the parameters of the algorithm The parameters of the algorithm can be
chosen based on the parameters of the problem (x0 and c), and that of the method d.

• The number of measurements N . The information is concentrated in the beginning of
the trajectory, therefore we need to have it so large that we do not get too close to ±1.
A reasonable choice is when N is in the order of 1/c2.

• The number of state points M . It cannot be too large, but it should be large enough
to get meaningful estimates. As xd becomes more distant from x0 the estimation (3.3)
is less efficient. Therefore, xd should not be too close to ±1. A meaningful approach
is to choose M = α ·

√
N with 0 < α ≤ 1.

• The optimal way of combining the estimates x̂
(d)
0 to form an overall estimate x̂∗

0 is to be
determined from statistical considerations. If d is close to 0 then (3.3) will have similar
variance like (3.2). It is known that if we have independent unbiased measurements
then the optimal linear measurement is if we have weights in ratio of reciprocal of
variances. In this case the variance of x̂

(d)
0 is constant times 1

Nd

, so the weights will be
Nd in the weighted average.

3.1.2 Simulation results

The values c = 0.1, x0 = 0.4 and N = 1000 were used in the simulations. Two different M
values were investigated: M = 10 and M = 20.

If the estimator (3.2) resulted in a value with absolute value greater than 1, then x̂
(d)
0 = ±1

was used depending on the positivity of (3.2). The estimate was constructed from the
individual estimators (3.3) by taking the weighted average.

In order to improve the efficiency of the estimate, we have repeated the simulation exper-
iments using multiple copies of the same unknown and probe qubit pairs, and have averaged
the estimates. The figures illustrating the simulation results depict the empirical mean values
and the empirical mean square errors (MSEs) as a function of the used qubit pairs.
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Figure 3.1: The mean and the MSE as a function of the number of used qubits

In the M = 10 case a large bias was observed because of the low number of relative
frequency data, that is seen in the left sub-figure of Figure 3.1. For bigger numbers of the
used qubit pairs this biasness vanishes, hence the mean square error becomes quite accurate
as shown in the right-sub-figure.

In the M = 20 case one could expect to have better estimates but this is not the case.
Because of the low number of relative frequency data the additional estimates that are far
away form the initial state are so bad that they make the estimate even worse. In Figure
3.1 we can see that the convergence of the estimate to the true value is much slower, it is
not surprising that mean square error is greater, too.

3.2 Bayesian state filtering

In this section a Bayesian parameter estimation method is proposed to estimate the initial
state x0. Let us suppose that f0(x) is an apriori density function of x0. A sequence of
indirect measurements is performed as before, and after each measurement the estimate of
x0 and the state evolution x(k) are updated.

3.2.1 The Bayesian model of the state evolution

If we denote the outcome of the kth measurement by y(k) ∈ {−1, 1}, then we can calculate
the actual state x(k) recursively from Eq. (2.9) as

x(k) =
x(k − 1) + y(k)c

1 + y(k) · c · x(k − 1)
, (3.4)

where x(0) = x0. Of course, as we seen before, after each time step

x(k) =
adx(0) + bd

ad + bdx(0)
,

with some constant ad and bd that only depend on c and on the actual difference between
the positive and negative measurement outcomes d. We will calculate the actual constants
together with the simple recursion (3.4) in each step, because we update the probabilities
also recursively.
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Let the posterior probability distribution of the estimate x0 be fk(x) after k step. Then
the probabilities evaluate in the following way

fk+1(x) = Prob(x0 = x|y(1), . . . , y(k + 1)) =

= Prob(y(k + 1)|x0 = x, y(1), . . . , y(k)) · Prob(x0 = x, y(1), . . . , y(k))

fk+1(x) ∝ (1 + y(k + 1) · c · x(k)) · fk(x) (3.5)

where ∝ means proportionality up to a normalizing constant.

3.2.2 Recursive estimation method

Let us fix the length of the measurement sequence to be N . If we do not know anything
about the initial state, then the standard procedure is to use the uniform distribution on the
state space as prior, i.e. let f0(x) = 1/2. As the calculations are not analytically feasible, we
only calculate the values of fk(x) on a grid of discrete values of xj ∈ [−1, 1].

Then, for each step (from k = 0 to N − 1) the following substeps are performed:

1. Perform a measurement and record y(k + 1)

2. Update the density function fk+1(x) = (1 + y(k + 1) · c · x(k)) · fk(x)

3. Update the new state distribution x(k + 1) = x(k)+y(k+1)·c
1+y(k+1)·c·x(k)

Having completed the above substeps, the whole sequence can be repeated on another
qubit pair, etc. The obtained posterior fN (x) of the previous copy is used as the new apriori
distribution on x0 for the next copy of the unknown and probe qubit pairs:

f0(x) :=
fN(x)

∫ 1

−1
fN(x)dx

3.2.3 Simulation results

The above described method was applied on multiple copies of qubit pairs with x0 = 0.4 and
c = 0.1. The length of each sequence was N = 100.

Figures 3.2 show the evolution of the probability density function of the estimate of x0

after 10, 100 and 1000 steps. The convergence seems to be smooth, but the last sub-figure
reveals a numerical issue that need to be solved, namely, we should somehow change the grid
of calculation dynamically, to obtain accurate results.

From the probability distribution we can get easily a point estimation on x0. The easiest
way to calculate the mean of the density function. Another possibility to fit a normal
distribution on the density function with least square method. With each method we will
get similar results as a point estimator.

The empirical statistics of the estimate have been analyzed as functions of the used qubit
pairs. The whole procedure was repeated 100 times and the results were averaged to calculate
the empirical mean value and empirical mean square error (MSE). The empirical mean of
the estimator can be shown in the left sub-figure of Figure 3.3, while the MSE is in the right
sub-figure. We can see in Figure 3.3 that the estimate is biased, that is natural because we
started from the uniform distribution on the [−1, 1] interval. But it can also be seen that
the convergence is fast, and the estimate is asymptotically unbiased. The right sub-figure of
Figure 3.3 shows a convergence of MSE to zero in the order of 1/N .
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Chapter 4

The martingale approach

The above two approaches result in a biased estimate of the initial state, therefore a novel es-
timation method based on the martingale property of the state evolution process is proposed
in this section.

4.1 The martingale generated by the state evolution

The process described in (2.9) is a martingale, because it is easy to check that

E(x(k + 1)) = x(k).

We can make use of this property if we fix the values u, v (u < x0 < v), and then we start
the process from x0 by performing indirect measurements until we reach either below u or
above v. In that case we stop the process and note the final state. In order to get a valid
estimation method we assume that

• |u| < 1, |v| < 1

• x0 is in the interval [u, v].

Assume that we stop the procedure based on the above rules at time T , in that case T will
be a stopping time, and according to Doob’s optional stopping theorem [17]: E(x(T )) = x0.

We can simplify the situation if we assume that the final state is exactly u or v, with
probabilities p and q (= 1 − p). In that case

E(x(T )) = p u + (1 − p) v = x0 (4.1)

and one obtains after rearranging:

p =
v − x0

v − u

We can use Eq. (4.1) for state estimation if we replace the probabilities (p, 1−p) with relative
frequencies after n repeated settings using different unknown and ancilla qubit pairs. Let
us denote νu = nu/n, νv = nv/n, where ni (i ∈ u, v) is the number of experiments with the
final state i. Then

x̂0 = νu u + νv v = νu u + (1 − νu) v = v + (u − v)νu

13
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The variance of this estimate is:

V ar(x̂0) = (u − v)2 V ar(νu) = (u − v)2 p(1 − p)

n

because nu has a binomial distribution with parameters (n, p). After substitution we obtain:

V ar(x̂0) =
1

n
(v − x0)(x0 − u)

Note if we have u = −1 and v = 1 then we get an equivalent method to the direct standard
method [11] with variance:

V ar(x̂0) =
1 − x2

0

n

If u and v are in the interior of [−1, 1] the we will get a smaller variance.

4.2 Stopping relative to the initial state

The above described procedure is not feasible because we do not know neither the state xk

nor x0, so we can not know when we reach the stopping time. Therefore, an initial state
relative method of detecting a stopping time is proposed where the final states are defined
using a given distance from the unknown initial state.

4.2.1 Data collection

Let be d(k) the number of +1 measurements minus the number of −1 measurements after
the first k measurements. Let us repeat the measurements until d(k) reaches ±D, where D
is a given integer, let be in this case τ = k.

In this case τ is a stopping time, and the final state will be x+ or x−, accordingly if d(τ)
is equal to +D or −D. We can calculate x+ and x− from recursion (2.10) to have x+ = yD

qD

,
where yD = aD + bDx0 and qD = bD + aDx0. Therefore

x+ =
aD + bDx0

bD + aDx0

Similarly we get:

x− =
−aD + bDx0

bD − aDx0

where aD and bD are the same as in x+.

4.2.2 The estimator

We can use the above results to estimate the initial state x0 using the [x−, x+] interval.
The probability that the process ends up in x+ is

p+ =
x0 − x−

x+ − x−

=
bD + aDx0

2bD

=
1

2

(

1 +
aD

bD

x0

)

(4.2)
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that only depends on the ratio of aD and bD, and let γD = bD

aD

. From the previous probability
we can easily get an estimate for x0. Denote ν+ the relative frequency of the x+ outcome,
then

x̂0 = γD(2ν+ − 1) (4.3)

Note that the estimate (4.3) is unbiased, because (4.2) is linear in x0. Let us also remark
that if we choose D big enough, then x+ and x− will be close to ±1, so we use the whole
trajectory and the estimation will be equivalent to the direct standard estimation method.
As D goes to infinity γD decreasingly converges to 1, and so (4.3) converges to the direct
standard estimator.

The variance of (4.3) is

V ar(x̂0) = 4γ2
DV ar(ν+) = γ2

D − x2
0 (4.4)

because ν+ has a binomial distribution.

4.2.3 Possible generalizations

One of the key properties of the repeated weak quantum measurements is that the expec-
tation value of the measurements is equal to the initial state. Therefore the martingale
property holds for any other measurement strategy, too. Then the key element of using
the martingale method is the knowledge of “stopping” probabilities. This is always a func-
tion of the initial state: Prob = f(x0), and from this we can easily construct an estimator:
x̂0 = f−1(Prob).

This probability can be calculated from the terminating points, i.e. it can be calculated
for almost all possible scenarios. The drawback is, that the variance is usually much bigger
than the optimal one. Therefore, we need such a γD which is close to 1, that is we need to
run the process quite long to achieve good variance.

4.3 Probability of returning to the initial state

At a stopping time the initial state is not completely destroyed, so we can try to get to the
initial state again. That means we run the process further until we reach d(k) = 0.

Let us suppose that we are in x+ and continue the measurements. Once again we can
use the result of the previous section with initial state x+ and with interval [x0, 1].

The probability that we return to x0 is:

preturn+ =
1 − x+

1 − x0
=

bD − aD

bD + aDx0
=

bD

aD

− 1
bD

aD

+ x0

Similarly the probability that we return to x0 from x− is

preturn− =
1 − x+

1 − x0
=

bD − aD

bD − aDx0
=

bD

aD

− 1
bD

aD

− x0

So the probability we return to x0 is

preturn = p+ · preturn+ + (1 − p+) · preturn− =
bD − aD

bD

= 1 − aD

bD

= 1 − 1

γD
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This gives the natural preturn = 1, if γD = ∞, when the change is infinitesimal. Another
example is preturn = 0, if γD = 1, when we have a direct Neumann-measurement as in the
direct standard method.

4.3.1 Repeated measurements

Of course if the state returns to the initial state we can repeat the whole procedure to extract
more information. The number of returns to initial state R will be geometrical distributed
with parameter preturn. In the long run the average number of returns will be the mean value
of R and

E(R) =
1

1 − preturn

= γD

This means that in average γD returns can be observed on one unknown and probe qubit
pair. These numbers are independent therefore the approximated variance is:

V ar(x̂0)

E(R)
=

γ2
D − x2

0

γD

Note that this will be minimal if γD = 1.

4.4 Simulation investigations

The properties of estimator given in Eq. 4.3 were investigated by simulation, too. In the
following let us assume that c = 0.1 and x0 = 0.4. The simulations were performed for two
different D values: first for D = 10 and then for D = 100. For these numbers we can easily
calculate the aD and bD values that are γ10 ≈ 1.3106178 and γ100 ≈ 1. For each number of
used qubit pairs we repeated the whole estimation procedure 100 times and calculated the
empirical mean values and empirical mean square errors (MSEs).
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Figure 4.1: The mean and the MSE as a function of the number of used qubits

For D = 10 we observed that the mean is unbiased, the empirical values are close to the
real initial state x0 = 0.4 (left sub-figure of Figure 4.1). On the right sub-figure it is seen
that the variance converges to the zero. The order of the convergence is 1/n, where n is the
number of used qubits.
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For D = 100 the mean is also unbiased (Figure 4.1), and the variance is converging to
zero with order of 1/n, but a smaller coefficient is obtained than previously, which is in good
agreement with (4.4). Note that this case is practically equivalent to the direct standard
measurement, since γ100 ≈ 1.



Chapter 5

Comparison and discussion

The three developed estimation method, the conditional histogram, the Bayes and the mar-
tingale approaches are compared in this section from the viewpoint of their efficiency. There-
after the effect of the parameters in the measurements scheme, the effect of the unknown
initial state x0, and that of the ancilla qubit state c on the estimation quality have been
investigated in the case of the martingale approach. Afterward a straightforward possibility
of generalization is introduced to the multiple parameter case.

5.1 Efficiency

The efficiency of the indirect estimation methods is evaluated by comparing the mean square
error (MSE) of their estimates with the theoretical variance of the direct standard estimation
method

η =
MSEmethod

V ardstandard

(5.1)

where V ardstandard =
1−x2

0

n
with n being the used qubit pairs.

The efficiencies of the previously detailed methods can be seen on the Figure 5.1.
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Conditional histogram approach On Figure 5.1 M=10 case is represented by diamonds
and M=20 case by upper triangle. This approach provides biased estimates, therefore its
relatively good efficiency shown should be taken with reservation. If the parametrization is
good (M=10), we can achieve quite efficient estimation, although this seem to be a tough
problem without any information on the initial state.

Bayes approach On Figure 5.1 this is represented by lower triangle. The estimate in this
case is also biased but the efficiency is not very good either. The method does not need any
parametrical setting, which can ruin the estimation. Nevertheless the computation demand
is high and it only produce mediocre efficiency.

Martingale approach On Figure 5.1 D=10 case is represented by square, D=100 case is
represented by circle. As we have seen before, the estimate based on the martingale approach
is unbiased, and its efficiency with D=100 is close to the optimal value 1. The optimal choice
of D is crucial, but it is enough to choose D big enough, but the actual value depends on
parameter c.

The above discussion show that the martingale approach gives the best quality estimate
from the statistical viewpoint, that is unbiased and efficient at the same time. In addition,
we can easily tune the parameter D.

5.2 The effect of the measurement scheme parameters on

the estimation quality

We have already seen, that the best quality result has been obtained using the martingale
approach with big D (D = 100). Therefore, the effect of the parameters in the measurement
scheme has been investigated only in this case.

The effect of the initial state x0 The martingale approach has been investigated by
using different initial states x0 = 0.1; 0.4; 0.9 but with the same parameter value c = 0.1.
The simulation results are shown in Figure 5.2 where the obtained values are denoted by a
full diamond for x0 = 0.1, a circle for 0.4, and a square for 0.9.
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The left sub-figure of Figure 5.2 shows the variation of the MSE with the number of
used qubit pairs. The graphs show a similar shape with an initial state dependent scaling
coefficient. It is not surprising because we expect from (4.4) that the coefficient is 1 − x2

0

(because γ100 ≈ 1). If we plot the efficiency η from (5.1), we can see (right sub-figure of
Figure 5.2) that efficiency is close to 1, there is no trivial dependence on the value of x0.

The effect of coupling parameter c The martingale approach with D = 100 was used
here with different values of parameter c but with the same initial state value x0 = 0.4. The
simulation results are shown in Figure 5.2 where the obtained values are denoted by a full
circle for x0 = 0.1, a square for 0.2, and a diamond for 0.05. Note that one needs more
measurements until the stopping points for c = 0.05 compared to the standard c = 0.1 case,
and one has less with c = 0.2.
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Figure 5.3: Comparison of MSE and efficiency for different c values (0.05: diamond, 0.1:
circle, 0.2: square)

It can be seen in both sub-figures of Figure 5.3 that neither the MSE nor the efficiency
does not depend on the value fo c in the investigated parameter domain. This is a conse-
quence of the fact that the same x0 = 0.4 was used, and the γ100 is very close to 1 for these
c parameter values with D = 100. With further decreased c a greater value of D should
be chose to achieve the same efficiency. In conclusion: a greater value of c does not affect
negatively on the quality of the estimate but a smaller number of measurements is needed
in this case.

5.3 Generalization to the multiple parameter case

Until now the single parameter simple case described in 2.3 was used to estimate selec-
tively one of the components of the unknown qubit’s Bloch vector, similarly to the so called
standard measurement scheme [12] for single qubits. A straightforward modification of the
measurement setup, that is, the change of the interaction direction and the observable to-
gether with the initial state of the probe qubit, leads to the estimators of the other two Bloch
vector components.

Generalization to n-level quantum systems Consider a k-level quantum system with
density matrix ρ acting on the Hilbert space H. Then the state of n identically prepared
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quantum systems is described by ρn := ρn⊗ acting on the n-fold tensor product Hilbert space
Hn. When dimH = k, we can identify the operators of Hn with matrices of kn × kn. Since
the density matrices are self-adjoint matrices with unit trace, they can be characterized by
m = k2 − 1 real parameters forming the parameter vector θ, the generalized Bloch vector.

Denote by Eij the k × k matrix units and set

Zii := Eii (1 ≤ i < k),
Xij := Eij + Eji (i < j),
Yij := −iEij + iEji (i < j).

The spectrum of Zii is {0, 1} and the spectrum of Xij and Yij is {−1, 0, 1}. These observables
can be used to estimate the k2 − 1 real parameter of the k × k density matrix selectively. If
each observables are measured r times, then R = r(k2 − 1) copies of the quantum system
are used.

Using the above state parametrization and observables, one can construct estimators that
can be applied in the indirect setting similarly to the ones described in the qubit case above.



Chapter 6

Conclusions

The simplest possible discrete time indirect measurement scheme has been investigated here,
where both the unknown and the measurement quantum systems are quantum bits. The
measurements applied on the measurement qubit were chosen to be the classical von Neu-
mann measurements using the Pauli matrices as observables. The repeated measurements
performed on the measurement subsystem of the composite system were used to construct
estimators of the initial state of the unknown system.

Based on the statistical properties of the considered indirect measurement scheme [15],
three related but different approaches have been proposed and investigated:

• a direct estimation procedure that is based on the estimated relative frequencies of the
characterizing conditional probability densities,

• a Bayesian recursive approach for state estimation,

• a martingale approach that bases the estimator on the stopping times of the state
evolution as a martingale driven by the repeated measurements.

The unbiasedness and the mean square error of the estimate has been analyzed by analytical
computations and computer simulation. It has been shown that the martingale approach
gives an unbiased estimate, while the other two approaches result in an at most asymptoti-
cally unbiased estimate.

It has been shown by simulation that the martingale approach gives the best quality
estimate from the statistical viewpoint, that is unbiased, and efficient at the same time. The
other methods do not perform much worse result, but there are some numerical settings
which are harder to fulfill.

The effect of the parameters of the estimation scheme on the quality of the estimate has
also been investigated by simulation, and possible generalization are also mentioned.
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