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Summary
Fermentation processes are widely used in process industries from pharmaceu-
tical industry to biologic cleaning. It is easy to see that the e�ective and safety
operation of these is very important which needs to be controlled continuously.

In my work I investigated some of the most important problems, that can
occur in controlling such nonlinear systems. I used a simple fermentation pro-
cess model for this, because it is easy to use but it has the most characteristic
problems that can occur in the case of large and di�cult systems, as well. I
considered two basic operation modes: continuous and fed-batch reactors.

With the help of reachability distributions I studied whether the system
would be controllable on the whole state-space when the input feed �ow is
constant but the substrate concentration changes in it. I also investigated the
zero-dynamics of the process that means the case when the system output does
not change but the value of the state variables is not necessarily constant. Fi-
nally, I considered the controllers that reliably stabilize the whole process. In
the last section I describe the MAPLE realization of the reachability distribu-
tion calculating algorithm.

Keywords: continuous and fed-batch processes, reachability analysis, zero-
dynamics, controllers.



Tartalmi összefoglaló
Fermentációs folyamatok az ipar számos területén el®fordulnak, a gyógyszer-
gyártástól kezdve az alkohol el®allításán át a biológiai tisztításig mindenütt.
Könnyen belátható, hogy ezek hatékony és biztonságos m¶ködése igen fontos
feladat, amihez elengedhetetlen a folyamat állandó kézben tartása.

Dolgozatomban ilyen nemlineáris folyamatrendszerek irányítása során leg-
gyakrabban felmerül® problémákat vizsgáltam meg. Ehhez egy fermentációs
reaktor modelljét hívtam segítségül, mert egyszer¶sége miatt könnyen kezel-
het®, de mégis magában hordozza mindazokat a lehetséges problémákat, amik
egy nagy és bonyolult rendszer kapcsán el®fordulhatnak. Két alapvet® m¶ködési
módot vizsgáltam meg: folyamatos és félfolyamatos m¶ködés¶ reaktorokat.

Az elérhet®ségi disztribúció segítségével tanulmányoztam, hogy vajon irá-
nyítható lesz-e a rendszer a teljes állapottéren, ha a bemeneti tápoldat men-
nyisége állandó, de változik benne a tápanyag aránya. Továbbá ellen®riztem a
folyamat zeró dinamikáját, vagyis azt az esetet, amikor a rendszer kimenetén
nem mutatkozik változás, de az állapotváltozók értéke mégsem állandó. Végül
ezek ismeretében kiválasztottam azokat a szabályzókat, amikkel megbízhatóan
irányítható rendszert kapunk.

Az utolsó fejezetben az elérhat®ségi disztribúciót szamító algoritmus MAPLE
realizációját ismertetem.

Kulcsszavak: folyamatos és félfolyamatos m¶ködés, elérhet®ségi analízis, zero-
dinamika, szabályzó tervezés.
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1 INTRODUCTION

1 Introduction
The design aim of process systems is to get energy and/or cost e�ective systems
based on the principles of thermodynamics. It is well known that the dynamic
behavior of such process systems is generally nonlinear and their control, based
on locally linearized models, is usually di�cult.

In this diploma work it is investigated how the methods of nonlinear model
analysis (i.e. analysis of reachability and zero dynamics) can be used in de-
signing stabilizing controllers of simple nonlinear process systems (continuous
and fed-batch fermenters). These problems were investigated in many papers,
e.g. control analysis of fed-batch fermentation processes in [10] or the analysis
of zero-dynamics of nonlinear systems in [3]. The necessary de�nitions and
notations are based on [6].

The problems I inspected in my diploma work were inspected in [9] as
well, where the input was the feed �ow rate. This work showed e.g. that
the model of fed-batch fermenters can be transformed into a two variable one
(minimal realization) for this input. Another result was that the performance
of the feedback linearization controllers was better than the controllers based
on locally linearized models.

This diploma work is organized as follows. For better understanding I
brie�y summarized the basic notions and notations in Chapter 2. The reach-
ability analysis of the fermenters and the investigation of the zero-dynamics
can be found in Chapter 3. In Chapter 4 static feedback controllers (pole-
placement and LQ) and controllers based on feedback linearization (exact and
input-output linearization) are designed. For choosing the appropriate one the
stability region, time and input energy needed by the controller was compared
to get an acceptable method to control the fermenter. In Chapter 5 a short
description of a reachability distribution calculating program can be found.
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2 BASIC NOTIONS AND NOTATIONS

2 Basic notions and notations
The dynamic properties of an open-loop system indicate control problems and
di�culties and may provide guidelines for control structure design. This chap-
ter summarizes the basic mathematical notions, notations and techniques for
the analysis and control of nonlinear systems ([5],[6]).

2.1 State-space representation
The general form of state-space representation of a linear time-invariant (LTI)
system is written in the following form:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)
(2.1)

with given initial condition x(t0) = x(0) and

x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rr

being vectors of �nite dimensional spaces and

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rr×n, D ∈ Rr×m

being matrices. In most cases the elements of matrix D are usually zeros.

De�nition 2.1 The state-space representation (SSR) of LTI systems is the
quadruplet of the constant matrices (A,B,C,D). The dimension of a SSR is
the dimension of the state vector: dim x(t) = n. The state space X is the set
of all states:

x(t) ∈ X, dimX = n

In nonlinear case the matrices (A,B,C,D) can be time dependent, but the
most general form is the following:

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))
(2.2)

The vectors x, u and y have the same dimensions as above.
A special case of this form is the so called input-a�ne form when the

nonlinear functions f and h specialize to

ẋ(t) = f(x(t)) +
∑m

i=1 gi(x(t))ui(t)

yi(t) = hi(x(t)) i = 1, . . . , p
(2.3)

2



2 BASIC NOTIONS AND NOTATIONS

The state x = (x1, . . . , xn) is assumed to belong to an open set of X of Rn. It
is also assumed (if otherwise not stated) that the number of inputs equals the
number of outputs i.e. m = p. f and gi are n-dimensional vector �elds, i.e.
f, gi ∈ Rn → Rn.

2.2 Coordinates transformations
Transforming the coordinates in the state space is often very useful in order
to highlight some properties of interest (e.g. reachability, observability etc.),
or to show how certain control problems can be solved.

2.2.1 Linear change of coordinates

This kind of transformation corresponds to the substitution of the original n
dimensional state vector x with a new vector z related to x by a transformation
of the form

z = Tx (2.4)

where T is a nonsingular n × n matrix. Accordingly, the original description
of the linear system

ẋ = Ax + Bu (2.5)
y = Cx (2.6)

is replaced by a new description

ż = Āz + B̄u (2.7)
y = C̄z (2.8)

where
Ā = TAT−1, B̄ = TB, C̄ = CT−1

2.2.2 Nonlinear change of coordinates

A nonlinear change of coordinates is written as

z = Φ(x) (2.9)

where Φ represents a Rn-valued function of n variables, i.e.

Φ(x) =




Φ1(x)

Φ2(x)
...

Φn(x)




=




Φ1(x1, . . . , xn)

Φ2(x1, . . . , xn)
...

Φn(x1, . . . , xn)




(2.10)
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2 BASIC NOTIONS AND NOTATIONS

with the following properties

1. Φ is invertible, i.e. there exists a function Φ−1 such that Φ−1(Φ(x)) = x

for all x ∈ Rn.

2. Φ and Φ−1 are both smooth mappings, i.e. they have continuous partial
derivatives of any order.

A transformation of this type is called a global di�eomorphism on Rn.
Sometimes, a transformation having both these properties and de�ned for

all x is di�cult to �nd. Thus, in most cases one rather looks at transforma-
tions de�ned only in a neighborhood of a given point. A transformation of
this type is called a local di�eomorphism. In order to check whether a given
transformation is a local di�eomorphism or not, the following result is very
useful.

Suppose Φ is a smooth function de�ned on some subset U of Rn. Suppose
the jacobian matrix of Φ is nonsingular at a point x = x0. Then, on a suitable
open subset U 0 of U, containing x0, Φ de�nes a local di�eomorphism.

2.3 Lie-derivative
Let λ ∈ Rn → R, f ∈ Rn → Rn be functions and U = dom(f) ∩ dom(λ) ⊆ Rn

an open set. The Lie-derivative of λ along f:

Lfλ(x) =
∂λ(x)

∂x
f(x) =

n∑
i=1

∂λ(x)

∂xi

fi(x) = < dλ(x), f(x) > (2.11)

It can be seen that the Lie-derivative is an element of R. From this follows
that the operation above can be used repeatedly:

LgLfλ(x) =
∂(Lfλ(x))

∂x
g(x) (2.12)

Lk
fλ(x) =

∂(Lk−1
f λ(x))

∂x
f(x) (2.13)

2.4 Lie-product
Let f, g ∈ Rn → Rn be real vector-valued functions and U = dom(f) ∩
dom(g) ⊆ Rn an open set. The Lie-product (bracket) of f and g:

[f, g](x) =
∂g(x)

∂x
f(x)− ∂f(x)

∂x
g(x) (2.14)

4



2 BASIC NOTIONS AND NOTATIONS

where

∂g(x)

∂x
=




∂g1(x)
∂x1

∂g1(x)
∂x2

. . . ∂g1(x)
∂xn

∂g2(x)
∂x1

∂g2(x)
∂x2

. . . ∂g2(x)
∂xn... ... . . . ...

∂gn(x)
∂x1

∂gn(x)
∂x2

. . . ∂gn(x)
∂xn




(2.15)

Naturally, [f, g](x) ∈ Rn. The Lie-product of two functions has some impor-
tant properties:

• bilinearity over R

Let f1, f2, g1, g2 ∈ Rn → Rn, r1, r2 ∈ R

[r1f1 + r2f2, g1] = r1[f1, g1] + r2[f2, g1] (2.16)
[f1, r1g1 + r2g2] = r1[f1, g1] + r2[f1, g2] (2.17)

• skew commutativity
[f, g] = −[g, f ] (2.18)

• Jacobi identity

[f, [g, h]] + [g, [h, f ]] + [h, [f, g]] = 0 (2.19)

2.5 Reachability of input-a�ne systems
2.5.1 Controllability of linear systems

For better understanding we review the controllability of linear systems before
analyzing the reachability of nonlinear ones. Consider the linear system

ẋ = Ax + Bu

y = Cx
(2.20)

in which x ∈ Rn denotes the state vector u ∈ Rm the input vector and y ∈ Rr

the output vector. The matrices (A,B,C ) consist of real numbers and have
proper dimensions.

De�nition 2.2 The linear system (2.20) is reachable if for all x1, x2 ∈ Rn

there exists such an input u that drives the system from the initiate state x1 to
the �nal state x2 in �nite time.

Reachability is a (global) system property in the linear case which is (or is
not) valid on the entire state space.

Suppose that there exists a d -dimensional subspace V of Rn having the
following property:

5



2 BASIC NOTIONS AND NOTATIONS

• V is invarinat under A, i.e. Ax ∈ V for all x ∈ V .

• V contains the image (i.e. the range-space) of the matrix B, i.e. Bu ∈ V

for all u ∈ Rm.

Then, after in appropriate linear coordinates transformation T in the state
space the Eq. (2.20) can be decomposed in the form

˙̄x1 = Ā11x̄1 + Ā12x̄2 + B̄1u

˙̄x2 = Ā22x̄2

(2.21)

where

x̄ = Tx = [x̄1 x̄2] , Ā = TAT−1 =

[
Ā11 Ā12

0 Ā22

]
, B̄ = TB =

[
B̄1

0

]

and x̄1 ∈ Rd, x̄2 ∈ Rn−d.
Note that n− d can be equal to 0. From the decomposition (2.21) we can

see that the set of coordinates denoted by x̄2 does not depend on the input u
but only on time.

It is well known from the theory of linear systems that the system (2.20)
is controllable (i.e. d = n) if and only if

rank
[

B AB . . . An−1B
]

= n (2.22)

2.5.2 Reachability of nonlinear systems

In this section we brie�y summarize the most important results and methods
of analyzing local reachability of nonlinear systems based on the book of Isidori
[6].

De�nition 2.3 The system (2.3) is said to be locally reachable around a point
x1 ∈ X if there exists such a neighborhood V of x1 that the system can reach
any state x2 ∈ V in �nite time with an appropriate input u.

Opposite to that reachability is a (global) system property in the linear case we
can say only that it is generally locally valid in the case of nonlinear systems
(i.e. not a system property). Therefore reachability will be used in the local and
controllability in the global sense (i.e. a nonlinear system is called controllable
if it is reachable around any point of its state space). Obviously, reachability
and controllability are equivalent in the case of linear time-invariant systems.

6



2 BASIC NOTIONS AND NOTATIONS

Firstly, we extend the notion of reachability for nonlinear systems. An
important concept for studying this property is the so-called distribution:

∆(x) = span {f1(x), . . . , fd(x)}

where f1, . . . , fd ∈ Rn → Rn are vector �elds and U = dom(f1) = . . . =

dom(fd) ⊆ Rn an open set. A vector space is assigned to each point of U.
This way, a distribution can be treated as a matrix such that the columns are
fi, i = 1, . . . , d. Some operations follow from the de�nition of distributions:

(∆1 + ∆2)(x) = ∆1(x) + ∆2(x) (2.23)
(∆1 ∩∆2)(x) = ∆1(x) ∩∆2(x) (2.24)

Obviously, if the distribution ∆1 and ∆2 are spanned by the functions (f1, . . . , fn)
and (g1, . . . , gm) respectively, then the distribution (∆1 + ∆2) is spanned by
(f1, . . . , fn, g1, . . . , gm).

De�nition 2.4 1. f ∈ Rn → Rn is a smooth vector �eld if it is partially
derivable for in�nite times and these derivatives are continuous func-
tions.

2. A distribution ∆ is called smooth distribution if it is spanned by smooth
vector �elds.

3. Nonsingular distribution ∆ de�ned on U:
∃d ∈ N such that

dim(∆(x)) = d ∀x ∈ U (2.25)

4. x0 is a regular point of a distribution ∆:
There exists a neighborhood U0 of x0 such that ∆ is nonsingular on U0.

5. Point of singularity:
Not a regular point.

6. f belongs to the distribution ∆ (f ∈ ∆):

f(x) ∈ ∆(x) ∀x (2.26)

7. A distribution ∆1 contains a distribution ∆2 (∆2 ⊆ ∆1):

∆2(x) ⊆ ∆1(x) ∀x (2.27)

7



2 BASIC NOTIONS AND NOTATIONS

8. A distribution ∆ is involutive:

f1 ∈ ∆, f2 ∈ ∆ ⇒ [f1, f2] ∈ ∆ (2.28)

9. A distribution ∆ is invariant under the vector �eld f :

g ∈ ∆ ⇒ [f, g] ∈ ∆ (2.29)

Lemma 2.1 Let ∆ be a nonsingular involutive distribution of dimension d
and suppose that ∆ is invariant under the vector �eld f. Then at each point x0

there exist a neighborhood U0 of x0 and a coordinates transformation z = Φ(x)

de�ned on U0, in which the vector �eld f is represented by a vector of the form

f̄(z) =




f̄1(z1, . . . , zd, zd+1, . . . , zn)
...

f̄d(z1, . . . , zd, zd+1, . . . , zn)

f̄d+1(zd+1, . . . , zn)
...

f̄n(zd+1, . . . , zn)




(2.30)

It's not di�cult to see that f̄(z) presents the coordinate-dependent nonlinear
analogue of Ā in (2.21).

Theorem 2.1 Let ∆ be a nonsingular involutive distribution of dimension d
and suppose that ∆ is invariant under the vector �elds f, g1 . . . , gm. Moreover,
assume that the distribution span{g1, . . . , gm} is contained in ∆. Then, for each
point x0 it is possible to �nd a neighborhood U0 of x0 and a local coordinates
transformation z = Φ(x) de�ned on U0 such that, in the new coordinates the
system (2.3) is represented by equations of the form

ζ̇1 = f1(ζ1, ζ2) +
m∑

i=1

gi(ζ1, ζ2)ui (2.31)

ζ̇2 = f2(ζ2) (2.32)
yi = hi(ζ1, ζ2) (2.33)

where ζ1 = (z1, . . . , zd) and ζ2 = (zd+1, . . . , zn).

Suppose that the assumptions of Theorem 2.1 are satis�ed, choose a point x0

and set x(0) = x0. For small values of t the state remains in U0 and we can
use Eqs. (2.31)-(2.33) to interpret the behavior of the system. From these, we
can see that ζ2 coordinates of x(t) are not a�ected by the input. If we denote

8



2 BASIC NOTIONS AND NOTATIONS

by x0(T ) the point of U0 reached at time t = T then it's clear that the set of
points that can be reached at time T, starting from x0, is a set of points whose
ζ2 coordinates are necessarily equal to the ζ2 coordinates of x0(T ). Roughly
speaking, if we can �nd an appropriate ∆ distribution and the local coordinates
transformation z = Φ(x) then we can clearly identify the part of the system
that behaves independently of the input in the neighborhood of x0. It is also
important to note that if the dimension of ∆ is equal to n then the dimension
of the vector ζ2 is 0, which means that the input a�ects all state variables in
a neighborhood of x0 (the system is reachable in a neighborhood of x0).

Lemma 2.2 Let ∆ be a given smooth distribution and τ1, . . . , τq a given set of
vector �elds. The family of all distributions which are invariant under τ1, . . . , τq

and contain ∆ has a minimal element, which is a smooth distribution.

Notation: The smallest distribution that contains ∆ and is invariant under
the vector �elds g1, . . . , gm will be denoted by

〈 g1, . . . , gm | ∆〉 (2.34)

2.5.3 Algorithm for generating the reachability distribution

As we will see in this subsection, the distribution (2.34) can be constructed
algorithmically. The method was proposed by Isidori in 1989 [6]. The descrip-
tion of a MAPLE realization can be found in Chapter 5 and the program code
in Appendix B.

1. At the beginning we have the vector �elds (f = g0, g1, . . . , gm) and

∆0 = span { g1, . . . , gm } (2.35)

2. Development of the reachability distribution

∆k = ∆k−1 +
m∑

i=0

[gi, ∆k−1] (2.36)

Note that one term in the last sum [gi, ∆k−1] is computed using the
functions (Φ1, . . . , Φl) spanning the distribution ∆k−1:

[gi, ∆k−1] = span { [gi, Φ1], . . . , [gi, Φl] } (2.37)

It is proved that ∆k has the property:

∆k ⊂ 〈 g0, . . . , gm | ∆0 〉 (2.38)

9



2 BASIC NOTIONS AND NOTATIONS

3. Stopping condition
If ∃k∗ such that ∆k∗ = ∆k∗+1, then

∆k∗ = 〈 g0, . . . , gm | ∆0 〉 (2.39)

The algorithm above exhibits some interesting properties. It starts with the
distribution spanned by the input functions gi(x) of the original state equa-
tion. Thereafter it requires to compute the Lie-brackets ([f(x), gi(x)]) of the
functions f(x) and gi(x) respectively. Then we further expand the distribution
obtained in the previous step until the stopping condition occurs.

2.6 The zero dynamics
The basic de�nitions and notation are summarized in this section based on the
work of Byrnes and Isidori [3]. The zero dynamics is an important concept
that plays a role exactly similar to the zeros of the transfer function in a linear
system.

De�nition 2.5 Consider the system (2.3) with constraints y = 0 that is

ẋ = f(x) +
∑m

i=1 gi(x)ui

0 = h(x)
(2.40)

The constrained system (2.40) is called the zero-output constrained dynamics,
or brie�y, the zero dynamics.

2.6.1 The zero dynamics of SISO nonlinear systems

De�nition 2.6 It is said that the system (2.3) with m = 1 and p = 1 has
relative degree r at x0 if LgL

k
fh(x) = 0 for all x in a neighborhood of x0 and

all k < r − 1, and LgL
r−1
f h(x0) 6= 0.

After a suitable coordinates transformation z = Φ(x) where zi = φi(x) =

Li−1
f h(x) for 1 ≤ i ≤ r and Lgφi(x) = 0 for r + 1 ≤ j ≤ n the state-space

model (2.3) with m = 1, p = 1 and relative degree r can be rewritten as

ż1 = z2

ż2 = z3

...
żr−1 = zr

żr = b(ξ, η) + a(ξ, η)u

η̇ = q(ξ, η)

(2.41)

10
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where ξ = [z1 . . . zr]
T , η = [zr+1 . . . zn]T , a(ξ, η) = LgL

r−1
f h(Φ−1(ξ, η)) and

b(ξ, η) = Lr
fh(Φ−1(ξ, η)).

The Problem of Zeroing the Output is to �nd, if it exists, pairs consisting
of an initial state x∗ and input function u de�ned for all t in a neighborhood of
t = 0, such that the corresponding output y(t) of the system is identically zero
for all t in a neighborhood of t = 0. For any �xed initial state x∗ the input
function u can be determined as follows. Let us set the output to be identically
zero, then the system's behavior is governed by the di�erential equation

η̇(t) = q(0, η(t)). (2.42)

The dynamics (2.42) describes the internal behavior of the system when the
output is forced to be zero and it is called the zero dynamics. The initial state
of the system must be set to a value such that ξ(0) = 0, while η(0) = η0 can
be chosen arbitrarily. Furthermore, the input must be set as

u(t) = − b(0, η(t))

a(0, η(t))
(2.43)

where η(t) denotes the solution of (2.42) with initial condition η(0) = η0.
The investigation of the zero dynamics can be extremely useful when se-

lecting the outputs to be controlled since the stabilization of an output with
globally asymptotically stable zero dynamics implies the global asymptotic
stability of the closed-loop system. This procedure will be illustrated on the
example of a bio-reactor in section 3.4. Motivated by the notions of linear
systems' theory, nonlinear systems with globally asymptotically stable zero
dynamics are called minimum-phase systems.

11
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3 Modelling and control analysis of fermenta-
tion processes

3.1 A short review of the operation of fermentation pro-
cesses

Fermentation processes are widely used in the biochemical industries. Fer-
menters are bio-reactors used for producing some kind of biomass or the by-
product of biomass growth. Baker's yeast, antibiotics and beer are typical
products of fermentation processes. A fermenter is usually modelled as a con-
tinuous stirred tank reactor (CSTR) where the biomass grows in a liquid-phase
environment. The schematics of a continuous fermenter is shown in �g. 3.1.

Two basic operation types of fermentation processes can be distinguished:

• In continuous fermenters the liquid volume in the reactor is held con-
stant, which means that the inlet feed �ow rate is equal to the output
�ow rate in each time instant (i.e. the product is continuously taken away
from the bio-reactor).

• In fed-batch fermentation processes the substrate is gradually fed into the
reactor, and the whole product is taken away at the end of the process
(i.e. the output �ow rate is zero during fermentation).

Although the nonlinear characteristics of continuous and fed-batch fermenta-
tion processes are similar, the control related problems are quite di�erent in
the two cases. However, the control goal is common in most cases: to stabilize
the system in a wide neighborhood of the the operating point (or prede�ned
trajectory) and to maximize biomass production.

3.2 Reachability of continuous fermentation processes
3.2.1 State-space model of the fermenter

In order to be able to focus on the key issues in the reachability analysis of
bio-reactors, the simplest possible bio-reactor, a perfectly stirred continuous
fermenter is chosen as a test case. Despite of its simplicity, it exhibits the key
properties which make bio-reactors di�cult to control.

Nonlinear state-space model

An isotherm nonlinear continuous fermenter is considered in this section with

12
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Figure 3.1: A simpli�ed model for a continuous fermenter

constant volume V and constant physico-chemical properties. The dynamics
of the process is given by the state-space model

dX

dt
= µ(S)X − XF

V
(3.1)

dS

dt
= −µ(S)X

Y
− SF

V
+

FSf

V
(3.2)

where
µ(S) = µmax

S

K2S2 + S + K1

(3.3)

The �rst equation originates from the biomass component balance, while the
second is from the substrate component mass balance. They are coupled by

X biomass concentration
[

g
l

]

S substrate concentration
[

g
l

]

Sf substrate feed concentration
[

g
l

]

F feed �ow rate 3.2
[

l
h

]

V volume 4 [l]

Y yield coe�cient 0.5 [−]

µmax kinetic parameter 1
[

1
h

]

K1 kinetic parameter 0.03
[

g
l

]

K2 kinetic parameter 0.5
[

l
g

]

Table 3.1: Variables and parameters of the fermentation process model
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Figure 3.2: The nonlinear reaction rate function µ(S)

the nonlinear reaction rate function µ(S) which is the main source of the non-
linearity and uncertainty in this simple model. The variables and parameters
of the model together with their units and parameter values are given in Table
3.1 and taken from [7]. The above model can easily be written in standard
input-a�ne form with the state vector x = [X S]T . The substrate feed con-
centration is chosen as manipulable input variable u = Sf . The u = F case
was investigated in [9].

ẋ = f(x) + g(x)u (3.4)

f(x) =

[
µ(S)X − XF

V

−µ(S)X
Y

− SF
V

]
, g(x) =

[
0
F
V

]
(3.5)

In controller design theory centered state vector and input variables are usually
used. So the new state vector is x = [X̄ S̄]T = [X −X0 S − S0]

T , the input
is u = S̄f = Sf − Sf0 and f(x) and g(x) will have the following form:

f(x) =

[
µ(S̄ + S0)(X̄ + X0)− (X̄+X0)F

V

−µ(S̄+S0)(X̄+X0)
Y

− (S̄+S0)F
V

]
, g(x) =

[
0
F
V

]
(3.6)

with (X0, S0, Sf0) being a steady-state operating point.

Calculation of the optimal operating point

At the optimal equilibrium state the biomass concentration in the outlet �ow
is at maximum, i.e. XF is maximal. It can be calculated from the nonlinear
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model that this equilibrium point is at

S0 =
1

2

−2K1 + 2
√

K2
1 + S2

f0
K1K2 + Sf0K1

Sf0K2 + 1
(3.7)

X0 = (Sf0 − S0)Y (3.8)

and the corresponding substrate feed concentration is

Sf0 = 10
g

l
(3.9)

Substituting the parameter values from Table 3.1 gives

S0 = 0.2187
g

l
, X0 = 4.8907

g

l
(3.10)

Linearized model

In order to compare linear and nonlinear control techniques, the linearized
version of the nonlinear state equation (3.4) and (3.6) is used around the
steady-state point (X0, S0, Sf0) above:

ẋ = Ax + Bu (3.11)

where

A =

[
∂f

∂x

]

x=0

=

[
0 0.4004

−1.6044 −1.6031

]
, B = g(0) =

[
0

0.8022

]
(3.12)

3.2.2 Controllability analysis

Controllability properties of the system play key role in designing controllers
not only in the desired operating point but also for the entire operating region.
Therefore, nonlinear analysis techniques are recommended to complement the
usual analysis based on locally linearized models.

Analysis based on local linearization

With the help of the matrices A and B (see in Eq. 3.12) we can compute the
Kalman-controllability matrix:

C =

[
0 0.3212

0.8022 −1.286

]
(3.13)

The determinant of this matrix is not zero, i.e. it is of full rank, so the sys-
tem is controllable (in the linear sense) in a close neighborhood of the optimal
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operating point. However, in two possible operating points S∗ =
√

K1

K2
and

X∗ = 0 the controllability matrix has only rank 1, that is, the system is locally
not controllable.

Nonlinear reachability analysis

After generating the reachability distribution based on the algorithm described
in section 2.5.3, nonlinear reachability analysis is used for identifying the sin-
gular points of the state-space around which the control of the system is prob-
lematic or even impossible. The local reachability distribution is generated
incrementally in two steps as follows. The initial distribution is

∆0 = span{g} = span
{[

0
F
V

]}
(3.14)

This is extended by the Lie-bracket of f and g in the �rst step

∆1 = ∆0 + span{[f, g]} = span{g, [f, g]} (3.15)

∆1 =

[
0 −µ′(S)XF

V
F
V

µ′(S)XF
Y V

+ F 2

V 2

]
(3.16)

where µ′(S) denotes ∂µ(S)
∂S

. It can be seen that ∆1 has rank 2, it is of full rank.
The second step gives the following:

∆2 = ∆1 + [f, ∆1] + [g, ∆1] = span{g, [f, g], [f, [f, g]], [g, [f, g]]} (3.17)

The distribution ∆2 evaluated at a given point of the state-space can be treated
as a 2×4 matrix. It is clear that the maximum rank of ∆2 can be only 2, i.e.
it cannot be of full rank and the algorithm stops at this point accordingly.

Singular points

At singular points (X = 0 and µ′(S) = 0) ∆1 has rank 1. We can determine
these non-desired states by checking whether the determinant of the distri-
bution is zero at a point. If it is, then we have to make sure of this is a
steady-state point or not. X = 0 is trivial. It means that there is no biomass
in the reactor and because the inlet �ow doesn't contain biomass it is a steady-
state point. The other singular point µ′(S) = 0 holds if S =

√
K1

K2
. In this

case the substrate concentration is higher than its optimal value but can be
changed by the input (Sf ) before the biomass concentration would decrease to
zero. We can say that this is not a steady-state point. The �rst singular point
is "wash-out" state in a sense, as the biomass disappears from the reactor.
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Therefore, this is an undesirable state.

Non-singular points

At any other point in the state-space including the desired operating point
[X̄ S̄]T = [0 0]T the reachability distribution has rank 2, which means that
the system is reachable in a neighborhood of these points and we can apply
state feedback controllers to stabilize the process.

3.3 Reachability of fed-batch fermentation processes
The reachability of a simple nonlinear fed-batch fermentation process model is
investigated in this section. It is shown that the known di�culties of controlling
such processes are primarily caused by the fact that the rank of the reachability
distribution is always less than the number of state variables.

3.3.1 Problem statement

Bio-processes in general and fermentation processes in particular are di�cult
to model and to control even in the simplest cases. The dynamic state-space
model of a fermenter is derived from �rst engineering principles which �x
certain structural elements in the model. The state equations are derived
from dynamic conservation balances of the overall mass, component masses
and energy if applicable. The speciality of a fermentation model appears in
the so called source function of these balances which is highly nonlinear and
non-monotonous in nature.

The aim of this section is to use rigorous nonlinear analysis of a simple fed-
batch fermenter model for analyzing the reachability properties and to relate
them to the physico-chemical phenomena taking place in the reactor.

3.3.2 Nonlinear state-space model

The simplest dynamic model of a fed-batch fermenter consists of three conser-
vation balances for the mass of the cells (e.g. yeast to be produced), that of the
substrate (e.g. sugar which is consumed by the cells) and for the overall mass.
Here we assume that the fermenter is operating under isotherm conditions,
that is no energy balance is needed. The cell growth rate is described by a
nonlinear static function µ.

Initially, a solution containing both substrate and cell is present in the
fermenter. During the operation we feed a solution of substrate with a given
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feed �ow rate F to the reactor.
Under the above assumptions the nonlinear state-space model of the fer-

mentation process (see Eq. 3.1) is extended by a new equation

dX

dt
= µ(S)X − XF

V
(3.18)

dS

dt
= −µ(S)X

Y
− SF

V
+

FSf

V
(3.19)

dV

dt
= F (3.20)

where
(3.21)

µ(S) = µmax
S

K2S2 + S + K1

(3.22)

The input-a�ne form with the state vector x = [X S V ]T and the input
u = Sf is the following:

ẋ = f(x) + g(x)u (3.23)

f(x) =




µ(S)X − XF
V

−µ(S)X
Y

− SF
V

F


 , g(x) =




0
F
V

0


 (3.24)

3.3.3 Reachability analysis

Investigating Eq. (3.24) we can see that the volume depends only on the feed
�ow rate F and is not in�uenced by the input or other state variables. From
this follows that the system will not be controllable on the entire state-space.
We get the same result by constructing the reachability distribution according
to the algorithm described in section 2.5.3.

∆0 = span{g} (3.25)

∆1 = ∆0 + span{[f, g]} = span{g, [f, g]} (3.26)

∆1 = span








0 −µ′(S)XF
V

F
V

µ′(S)XF
Y V

0 0








(3.27)

It is easy to see that the rank of ∆1 is at most 2. Because the third row of this
distribution contains zero elements any other matrices we get in the following
steps will have the same rank:

∆2 = ∆1 + span{[f, ∆1] + [g, ∆1]} = span{g, [f, g], [f, [f, g]], [g, [f, g]]} (3.28)
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∆2 = span








δ11(x) δ12(x) δ13(x) δ14(x)

δ21(x) − 1
Y

δ12(x) − 1
Y

δ13(x) − 1
Y

δ14(x)

0 0 0 0








(3.29)

where

δ11(x) = 0 (3.30)

δ12(x) = −µ′(S)
XF

V
(3.31)

δ13(x) =
XF

V
(µ′(S)

F

V
− µ′2(S)

X

Y
+ µ(S)µ′′(S)

X

Y
+ µ′′(S)

SF

V
) (3.32)

δ14(x) = −µ′′(S)
XF 2

V 2
(3.33)

δ21(x) =
F

V
(3.34)

and µ′(S) = ∂µ(S)
∂S

.

3.3.4 Minimal realization of fed-batch fermentation processes

As mentioned earlier, it was found in [9] that the fed-batch processes was not
controllable on the whole state-space for input u = F . To solve this problem
it showed a coordinates transformation that resulted a minimal realization of
the model, which was already reachable. The original input-a�ne form was:

f(x) =




µ(S)X

− 1
Y

µ(S)X

0


 =




µmaxSX
K1+S+K2S2

− µmaxSX
(K1+S+K2S2)Y

0


 , g(x) =



−X

V
Sf−S

V

1


 (3.35)

The work [9] gave a function for which it was easy to check from the model
equations (3.35) that

γ(x) = V

(
− 1

Y
X − S + Sf

)
(3.36)

is constant in time under any input i.e. d
dt

γ = ∂γ
∂x

ẋ = 0 (see e.g. [8] or [10] for
a complete control Lie-algebraic derivation).

Using the calculated γ function, it was possible to give a minimal state
space realization of fed-batch fermentation processes. Since the reachability
hypersurface de�ned by γ is two-dimensional, the minimal realization will con-
tain two state variables (i.e. the input-to-state behavior of the system can be
described by two di�erential equations). It's clear from the above that

γ(x(t)) = − 1

Y
X(t)V (t)− (S(t)V (t)− SfV (t)) = (3.37)

= − 1

Y
X(0)V (0)− (S(0)V (0)− SfV (0)) = γ(x(0)).
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Therefore we can express the volume V from the above equation in the follow-
ing way:

V =
γ(x(0))

− 1
Y

X + Sf − S
, − 1

Y
X + Sf − S 6= 0 (3.38)

and the minimal state space model reads

ẋ = fmin(x) + gmin(x)u, (3.39)

where

x =

[
X

S

]
, fmin(x) =

[
µmaxSX

K1+S+K2S2

− µmaxSX
(K1+S+K2S2)Y

]
, gmin(x) =




1
Y

X2+X(S−Sf )

γ(x(0))
(− 1

Y
X+Sf−S)(Sf−S)

γ(x(0))




(3.40)
We can see by expressing V from γ that the structure of the reaction rate
function in fmin remained unchanged. It's also important to note that the
function gmin in the minimal realization (3.40) depends on the initial state of
the system.

This result of [9] will be used in analyzing the zero dynamics of fed-batch
processes.

3.4 The zero dynamics of continuous fermentation pro-
cesses

In order to analyze zero dynamics as it is described in section 2.6, we need
to extend the original nonlinear state equation (3.4) with a nonlinear output
equation

y = h(x) (3.41)

where y is the output variable and h is a given nonlinear function. The zero
dynamics of an input-a�ne nonlinear system containing two state variables can
be analyzed using a suitable nonlinear coordinates transformation z = Φ(x):

[
z1

z2

]
=

[
y

λ(x)

]
(3.42)

where λ(x) is a solution of the following partial di�erential equation (PDE):

Lgλ(x) = 0 (3.43)

where Lgλ(x) = ∂λ
∂x

g(x) i.e.

∂λ

∂X̄
g1(x) +

∂λ

∂S̄
g2(x) = 0 (3.44)
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With the help of Φ we get a system in which the dynamics depend on only
one state variable. Thus, the analysis of the zero dynamics will be easier.

In the case of the simple fermenter the above equation is the following:

∂λ

∂X̄
0 +

∂λ

∂S̄

F

V
= 0 (3.45)

from which we get
∂λ

∂S̄
= 0 (3.46)

This means that λ is independent of S̄ and we can choose an arbitrary contin-
uously di�erentiable function F of X̄ for λ:

λ = F (X̄) (3.47)

Then we can use the simplest possible coordinates transformation z = Φ(x) in
the following form: [

z1

z2

]
=

[
y

X̄

]
(3.48)

3.4.1 Selecting the substrate concentration as output

Choose a linear function of the substrate concentration as output:

z1 = y = ksS̄ (3.49)

where ks is an arbitrary positive constant. Then the equation z = Φ(x) has
the following form: [

z1

z2

]
=

[
ksS̄

X̄

]
(3.50)

From z2 = λ(x) (see in Eq. 3.42) the zero dynamics in the transformed coor-
dinates can be computed as

ż2 = λ̇(x) =
∂λ(x)

∂x
ẋ =

∂λ(x)

∂x
(f(x) + g(x)u) (3.51)

which gives

ż2 = Lfλ(x) + Lgλ(x)u = Lfλ(x) = Lfλ(Φ−1(z)) (3.52)

since Lgλ(x) = 0 (see Eq. 3.43). The inverse transformation x = Φ−1(z) is
given by [

X̄

S̄

]
=

[
z2

z1

ks

]
(3.53)
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The above equation is constrained by y = ksS̄ = z1 = 0. Then the zero
dynamics of the system is given by the di�erential equation

ż2 = Lfλ(Φ−1(z1, z2)) = Lfλ(Φ−1(0, z2)) = (z2 + X0)(µ(S0)− F

V
) (3.54)

Using the values in Table 3.1 and Eq. (3.10) we get ż2 = 0 in the optimal oper-
ating point. This result is very important because the biomass concentration
in the reactor will not change when the output is constant. However, in a small
neighborhood of the optimal operating point this can be unstable depending on
the value of F

V
. If this ratio is smaller than µ(S0) the zero dynamics is unstable.

With the condition F
V

> µ(S0) we can design a feedback controller which can
stabilize the system in a small neighborhood of the optimal operating point.

3.4.2 Selecting the biomass concentration as output

Choose a linear function of the biomass concentration as output:

z1 = y = kxX̄ (3.55)

where kx is an arbitrary positive constant, then the equation z = Φ(x) has the
following form: [

z1

z2

]
=

[
kxX̄

X̄

]
(3.56)

In this case the system has relative degree 2 according to de�nition 2.6. From
this follows that the equation η̇ = q(ξ, η) does not exists (see in Eq. 2.41) which
means there is no zero dynamics. In this very fortunate case if we manage to
stabilize the biomass concentration either by a full state feedback or by an
output feedback controller then the overall system will be stable.

3.4.3 Selecting the linear combination of the biomass and the sub-
strate concentrations as output

In this case the output is the linear combination of the biomass and the sub-
strate concentrations:

z1 = y = kxX̄ + ksS̄ (3.57)

where kx and ks are arbitrary positive constants, then the inverse transforma-
tion x = Φ−1(z) is given by

[
X̄

S̄

]
=

[
z2

z1−kxz2

ks

]
(3.58)
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Figure 3.3: The numerator of the zero dynamics in the combined output case,
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Thus the zero dynamics in the transformed coordinates can be computed as

ż2 = Lfλ(Φ−1(0, z2)) = (z2 + X0)(µ(−kx

ks

z2 + S0)− F

V
) (3.59)

Where the denominator is 0 the zero dynamics has singular points:

z2 =
ks

2kx

2K2S0 + 1±√1− 4K1K2

K2

(3.60)

These are at z2 = 0.2491 and z2 = 2.1882 when the parameters kx and ks are
supposed to be 1. The ks

kx
ratio determines the place of the singular points.

The equilibrium points of the zero dynamics are even more important. In
this case when the output is the linear combination of the substrate and the
biomass concentrations the equilibrium points are at

z2 = −X0 (3.61)

and at

z2 =
ks

2kx

−µmaxV + F + 2FK2S0 ±
√

µ2
maxV

2 − 2µmaxV F + F 2 − 4F 2K1K2

FK2
(3.62)

These can be seen in Figure 3.3. At the �rst and at the third point the zero
dynamics is stable and unstable at the second. The place of the equilibrium
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points is determined by ks

kx
again. From a controller designer's point of view

the stable zero dynamics are much to be desired: we can choose appropriate
kx and ks to get a stable equilibrium point at the optimal operating point.
When the output is zero then an output feedback controller will not sense any
change and the system will stay at the desired point after all.

3.5 The zero dynamics of fed-batch fermentation pro-
cesses

The coordinates transformation generator function Now again, we
have two state variables in the minimal realization model (3.40). The PDE
∂λ
∂x

g(x) = 0 can be solved analytically for this case to obtain a function λ that
satis�es the condition in (3.43)

λ(x) = F
(

ln

(
X

Sf − S

))
, (3.63)

where F is an arbitrary function of the class C1. Note that this solution re-
quires the assumption Sf − S > 0 which always holds under physically mean-
ingful operating and initial conditions. It's important to note that λ does not
depend on γ containing the initial conditions.

3.5.1 Choosing the substrate concentration as output

Now we choose z1 = y = h(x) = S. Because λ does not depend on γ, the
following coordinates-transformation is valid for all initial states:

[
z1

z2

]
=

[
S

ln
(

X
Sf−S

)
]

= Ψ(x) (3.64)

This results in the inverse transformation:
[

X

S

]
=

[
exp(z2)(Sf − z1)

z1

]
= Ψ−1(z). (3.65)

Then the zero dynamics reads

ż2 = λ̇ =
∂λ

∂x
ẋ =

1

X
f1(x) +

1

Sf − S
f2(x), (3.66)

which gives
ż2 = µ(S)

(
1− X

(Sf − S)Y

)
(3.67)
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Figure 3.4: The zero dynamics in the transformed coordinates: fed-batch biore-
actor, input: inlet feed �ow rate, output: biomass concentration, z1 = 4g

l

If we apply the inverse coordinates-transformation given by (3.65), the µ func-
tion remains in the expression and this gives

ż2 = µ(z1)

(
1− exp(z2)

Y

)
(3.68)

It's easy to calculate that the equilibrium point of (3.68) is at z∗2 = ln(Y )

independently of how z1 (the substrate concentration) is set (if z1 > 0). This
means that if the substrate concentration is kept on any constant value (by
manipulating the input feed �ow rate), then the biomass concentration al-
ways converges to the corresponding equilibrium value on the X � S plane
independently of the reaction rate function µ.

3.5.2 Choosing the biomass concentration as output

In this case z1 = y = h(x) = X and the coordinates-transformation is:
[

z1

z2

]
=

[
X

ln
(

X
Sf−S

)
]

= Ψ(x) (3.69)

Its inverse transformation is in the following form:
[

X

S

]
=

[
z1

exp(z2)Sf−z1

exp(z2)

]
= Ψ−1(z) (3.70)

25



3 MODELLING AND CONTROL ANALYSIS

Then the zero dynamics in the new coordinates is:

ż2 =
µmax(exp(z2)Sf − z1) exp(z2)(Y − exp(z2))

(exp(2z2)(K1 + Sf + K2S2
f )− exp(z2)(z1 − 2K2Sfz1) + K2z2

1)Y
(3.71)

The right hand side of eq. (3.71) is shown in Fig. 3.4 for a �xed value of
z1 = 4g

l
. It is visible, that in this case the zero dynamics have two equilibria,

one of which is independent of z1 and is locally asymptotically stable (z∗2 =

ln(Y ) ≈ −0.6931g
l
), and the other one is unstable. It means that a high gain

feedback of the biomass concentration may move the biomass concentration
itself out of the desirable range.
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4 Controller design
Linear systems can be controlled easier than nonlinear ones. Many well known
methods can be found in the literature (e.g. pole-placement, LQR controllers)
[4]. However, most of the real-life systems are nonlinear and di�cult to control.
The most common way to solve this problem is either use linear techniques on
locally linearized versions of nonlinear models or use model-based predictive
control.

Fermentation processes in particular exhibit strong nonlinear characteris-
tics and are known to be di�cult to control. The investigated simple fermenta-
tion process is therefore used as a benchmark problem for advanced nonlinear
analysis and control techniques.

Controllers of di�erent type are designed and compared on the example
of a simple fermenter near an optimal production operating point. Nonlinear
analysis of controllability and zero dynamics presented in the previous chapter
is used to investigate open-loop system properties, to explore the possible con-
trol di�culties and to design the system output to be used for control. Several
type of controllers are tested including pole-placement and LQ controllers, and
input-output linearization controllers.

4.1 Basis of stability analysis
It is well known that every feedback changes the stability properties of a sys-
tem. This is the reason for using controllers on systems being unstable or hav-
ing narrow stability region. The stability analysis used in this work is based on
Lyapunov technique where the aim is to �nd a positive de�nite scalar-valued
energy function V(x) that has negative de�nite time derivative in the whole
operating region. Most often a general quadratic Lyapunov function is used in
the form of

V (x) = xT Px (4.1)

with P being a positive de�nite symmetric quadratic matrix. This function
is scalar-valued and positive de�nite everywhere. The stability region of an
autonomous nonlinear system is then determined by the negative de�niteness
of its time derivative:

dV

dt
=

∂V

∂x
ẋ =

∂V

∂x
f̄(x) (4.2)

where f̄(x) = f(x) in the open loop case (assuming zero input) and f̄(x) =

f(x) + g(x)K(x) in the closed loop case where K(x) is the static feedback.
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The matrix P of the Lyapunov function is determined in the following way:
after calculating the feedback gain K the autonomous system was linearized in
the optimal operating point. This resulted matrix A. Then a positive de�nite
symmetric matrix Q was chosen. After this the following equation was solved
for P :

AT P + PA = −Q (4.3)

where Q = I2×2. According to Lyapunov's criterion if A is a stability matrix,
i.e Re {λi(A)} < 0 then P has to be a matrix with the necessary properties.
This analysis cannot show the exact stability region only a subset of it.

4.2 Open loop system behavior
Before investigating di�erent type of controllers and their performance we
should examine the open loop system behavior. In the case of a simple contin-
uous fermenter there are two state variables. Every variable has a minimum
and a maximum value in the stability region of the system. Beyond these val-
ues the fermenter will be unstable which means the biomass concentration will
decrease to zero and the substrate concentration will increase to Sf0 . However,
from the nonlinearity the stability region will be a circle or an ellipse in the
state-space and not a rectangle if one can believe. For centered state variables
the minimum and maximum values are:

X̄ ∈ [−0.03 ∞]

S̄ ∈ [−0.13 0.1]
(4.4)

An interesting value is the upper bound of X̄. In�nity denotes that X̄ can
increase extremely high, but without growing the amount of substrate the
biomass concentration will decrease to optimum.

4.3 Pole-placement controller
Pole-placement controllers are based on a very simple principle: when a linear
system is stable then all of the eigenvalues of matrix A (see in Eq. 2.20) have
strictly negative real parts, i.e. Re{λi(A)} < 0, ∀i. The eigenvalues are the
poles of the system. If the system is not stable then we can compute a static
feedback u = −Kx:

K = (α− a)T−T
l C−1 (4.5)

where α is the new desired characteristic polynomial, a is the original charac-
teristic polynomial, Tl denotes the Toeplitz matrix and �nally C is the Kalman-
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Figure 4.1: Control con�guration of static linear feedback (pole-placement, LQ
control)

controllability matrix (see Eq. 3.13). With this u the poles will have strictly
negative real parts. The schematic control con�guration of static linear feed-
back is shown in Figure 4.1.

Pole-placement controllers are based on full state feedback, which means
they use the value of all state variables, so generally the feedback gain K does
not contain zero values. Firstly, a controller like this is designed such that the
poles of the linearized model of the closed-loop system are at [−1 − 2]T . The
necessary feedback gain is

K = [4.2329 1.7423] (4.6)

For this feedback the stability region will be in the following rectangle:

X̄ ∈ [−0.08 ∞]

S̄ ∈ [−0.2187 0.07]
(4.7)

Unfortunately, ∞ has not the same meaning as before. Simulations showed
that starting the system from a value over the optimal biomass concentration
it will not reach the optimum but a steady state value over it. The more
deviation is to be controlled the more remaining error we get. For the substrate
concentration the stability region is much wider. The controller can handle the
case in which the substrate is missing from the reactor (e.g. at the start of the
process). The Lyapunov function of pole-placement controller can be seen in
Figure 7.1.

29



4 CONTROLLER DESIGN

4.4 LQ controller
LQ-controllers are popular and widely used for process systems. They are
known to stabilize any stabilizable linear time invariant system globally, that
is over the entire state-space. This type of controller is designed for the locally
linearized model of the process and minimizes the cost function

J(x(t), u(t)) =

∫ ∞

0

(xT (t)Qx(t) + uT (t)Ru(t))dt (4.8)

where Q and R (the design parameters) are positive de�nite weighting matrices
of appropriate dimensions. They can be called cost matrices, because Q is the
punishment for deviating from the optimal operating point, and R means the
input energy needed by the controller. The optimal input that minimizes the
above functional is in the form of a linear full state feedback controller u =

−Kx. The result for two di�erent weighting matrix selections are investigated.
By cheap control the deviation from the optimum really does not matter. We
use small weights in contradiction to expensive control.

Cheap control

In this case the design parameters Q and R are selected to be Q = I2×2 and
R = 1. The resulting full state feedback gain is K = [0.2361 0.2884]. This
gives the stability region in:

X̄ ∈ [−0.04 ∞]

S̄ ∈ [−0.2 0.09]
(4.9)

At the upper bound of X̄ ∞ denotes the same as before: the controller will
set the biomass concentration toward to its optimal value but ever further as
the deviation increases. The Lyapunov function of LQR cheap controller can
be seen in Figure 7.2.

Expensive control

The weighing matrices were Q = 10× I2×2 and R = 1. The full state feedback
gain was K = [1.7417 1.9683]. Expensive control will have the same stability
region as pole-placement controller, and the same behavior, as well.

X̄ ∈ [−0.09 ∞]

S̄ ∈ [−0.2187 0.07]
(4.10)

The Lyapunov function of LQR expensive controller can be seen in Figure 7.3.
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Figure 4.2: Control con�guration of input-output linearization with stabilizing
outer feedback.

4.5 Stabilization by feedback linearization
Applying feedback linearization, a nonlinear technique, the state variables are
transformed into new coordinates z in which the system will have linear dynam-
ics. Then, a simple linear static controller can be employed on the linearized
system.

Exact linearization

Exact linearization can be done only when we �nd such an (arti�cial) output
as the system's relative degree is equal to the number of the state variables
according to de�nition 2.6. It means the system has no zero dynamics (see
Eq. 2.41). The biomass concentration would be an appropriate choice (from
section 3.4.2). This means we have found an output λ(x) = X̄ which satis�es
the conditions of exact linearization, that is a solution of [6]

Lgλ(x) = 0 (4.11)

Note that the above equation is exactly the same as the equation (3.43) used
for determining the coordinate transformation for analyzing zero dynamics of
the system.

The components of state feedback u = α(x) + β(x)v for linearizing the
system are calculated as

α(x) = − L2
fλ(x)

LgLfλ(x)
(4.12)
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β(x) =
1

LgLfλ(x)
(4.13)

and the new coordinates are

z1 = λ(x) = X̄ (4.14)

z2 = Lfλ(x) =
µmax(S̄ + S0)(X̄ + X0)

K2(S̄ + S0)2 + S̄ + S0 + K1

− (X̄ + X0)F

V
(4.15)

The state-space model in the new coordinates is

ż1 = z2 (4.16)
ż2 = v (4.17)

which is linear and controllable. At �rst look the linearized model may seem
quite simple but if we calculate α(x) and β(x), needed by the linearizing state
feedback, we can see that they are very complicated functions of x. Moreover,
the second new coordinate z2 depends on µ(S) which indicates that the coor-
dinate transformation is sensitive with respect to uncertainties in the reaction
rate expression. In fact, there is no use to apply exactly linearized model in
this case because the feedback is hard to compute and evaluate numerically.
The Lyapunov function of exact linearization controller can be seen in Figure
7.4.

Input-output linearization

Here we are looking for more simple and practically useful forms for linearizing
the input-output behavior of the system. This method is like the former but
here the relative degree is smaller than the number of state variables. This
means there is zero dynamics which we calculated in section 3.4 for di�erent
outputs. It makes our task easier because we don't need to look for an arti�cial
output λ(x) to satisfy a strict condition and don't have to calculate so complex
feedback. The static nonlinear full state feedback is calculated as

u = α(x) + β(x)v = −Lfh(x)

Lgh(x)
+

1

Lgh(x)
v (4.18)

provided that Lgh(x) 6= 0 in a neighborhood of the operating point where v

denotes the new reference input. As we will see the key point in designing such
controllers is the selection output function h(x) where the original nonlinear
state equation (3.4) is extended by a nonlinear output equation y = h(x)

where y is the output variable. The control con�guration of input-output
linearization is shown in Figure 4.2.
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Controlling the substrate concentration In this case the chosen output
is h(x) = S̄. The full state feedback is composed of the functions

α(x) = −Lfh(x)

Lgh(x)
(4.19)

= (S̄ + S0)
µmax(X̄ + X0)V + FY K2(S̄ + S0)

2 + FY (S̄ + S0) + FY K1

(K2(S̄ + S0)2 + S̄ + S0 + K1)Y F
(4.20)

β(x) =
1

Lgh(x)
=

V

F
(4.21)

The new coordinates are

z1 = S̄ (4.22)

z2 = − µmax(S̄ + S0)(X̄ + X0)

(K2(S̄ + S0)2 + S̄ + S0 + K1)Y
− (S̄ + S0)F

V
(4.23)

The state-space model in the new coordinates is

ż1 = v (4.24)

ż2 = (z2 + X0)(µ(S0)− F

V
) = 0 (4.25)

The outer loop for stabilizing the system is the following

v = −Kh(x) (4.26)

where K = [10 0] was applied. This kind of controller will have the following
bounds for the stability region:

X̄ ∈ [−0.04 0.09]

S̄ ∈ [−0.03 0.08]
(4.27)

These are very narrow limits for a relatively large feedback gain, but choosing a
smaller gain will result narrower bounds. If the �rst component of K was over
10 then region would decrease and the accuracy, as well. The Lyapunov func-
tion of input-output controller controller with substrate concentration feedback
can be seen in Figure 7.5.

Controlling the linear combination of the substrate and the biomass
concentrations In this case h(x) = kxX̄ + ksS̄ was chosen as output where
the row vector k = [kx ks] is calculated to get an equilibrium point at the
optimal operating point. Then the functions α and β are given as
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α(x) = −µ(X̄ + X0)V Y − (X̄ + X0)FY − µ(X̄ + X0)V − (S̄ + S0)FY

Y F
(4.28)

β(x) =
V

F
(4.29)

The transformed coordinates are

z1 = kxX̄ + ksS̄ (4.30)
z2 = Lfh(x) = kxf1(x) + ksf2(x) (4.31)

where f1(x) and f2(x) are the components of f. The state-space model in the
new coordinates is

ż1 = v (4.32)

ż2 = (z2 + X0)(µ(−kx

ks

z2 + S0)− F

V
) (4.33)

The value of k = [kx ks] was [0.02 5.23] and in the outer loop a negative
feedback with the gain K = [10 10] was applied. This resulted the stability
region in:

X̄ ∈ [−0.35 0.25]

S̄ ∈ [−0.2187 0.02]
(4.34)

The feedback, which controls the linear combination of the biomass and the
substrate concentrations as output, gives us a very wide stability region. In
spite of this fortunate property, after all transient have settled the remaining
error will be too much. The Lyapunov function of input-output controller with
the linear combination of biomass and substrate concentrations feedback can
be seen in Figure 7.6.

4.6 Selecting the appropriate controller
Firstly, controllers based on the local linearized model will be compared. This
is based on investigating the stability region, time and the input energy needed
by the controller but only for the biomass concentration because the main goal
of the fermentation process is to maximize XF , where the input/output �ow
rate F is constant. The time needed by the controller is the time T when
the biomass concentration reaches the 95% of its steady state value. The used
input energy is calculated as E =

√∫ T

0
|u(t)|2 dt.

Pole-placement and LQR with expensive Q weighting matrix had the same
stability region and showed the same behavior. However, the latter needed
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Figure 4.3: Biomass and substrate concentrations controlled by LQR cheap
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more time and energy. From simulations we get that cheap control is better
than expensive LQR or pole-placement control. It drives the biomass con-
centration closer to its optimum than the other ones. Its accuracy is about
±0.01 when X̄ ∈ [−0.04 0.2] (see �gure 4.3). The reason for this is the small
gain in the feedback. Important disadvantages of the cheap control are the
smaller stability bounds below zero and it needs more time and energy than
the expensive LQR or the pole-placement controller.

From the comparison of controllers based on input-output feedback lin-
earization follows that the linear combination of biomass and substrate con-
centrations seems to be a better choice as an output.

To get the appropriate controller an LQR cheap and a feedback lineariza-
tion controller must be investigated. Although the latter has much wider
stability region than the open loop system or any other fed back system, its
remaining error for biomass concentration is greater than the LQR controller's,
it can be form 0.03 up to 0.15. When the substrate concentration changes then
the LQR controller needs less time to stabilize the system. The used energy is
generally equal. The only advantage of the feedback linearization controller is
the size of the stability region.

Conclusion: if one wanted to use a controller based on the some way lin-
earized system, then the value of both state variables should be used and the
best controller choice would be an LQR cheap controller.
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5 Program description
In this chapter will be described how the MAPLE implementation of Isidori's
algorithm (see section 2.5.3) works. The program structure is like in a high-
level program language: often used program parts are written in functions
which can be found before the main part. Some among them is the implemen-
tation of a MATLAB function [2]. The only reason for this was to help that,
who wants to implement this MAPLE program in MATLAB. However, there
is an important di�erence: MAPLE handles vectors in row vector form [1].

5.1 Function descriptions
Size: This is one of the implemented MATLAB functions. It calculates the
size of the input vector or matrix. Firstly, it determines the number of rows by
increasing the variable i until h is not an error message. If it is then i reached
the maximum at that direction. The output vector is [row column].

Lie: The function Lie calculates the Lie-products described in section 2.4.
From the de�nition of this product follows that the order of the input vector
is important. It returns a vector Lie_prod.

Projector: It will choose a row from the distribution ∆. The input is the
number of the row we want to project. This function is used at the calculation
of Lie-products.

Compare: The selection of the old and the new Lie-products will be done
by this function. It returns true when the input vectors are identical and false
otherwise.

Zeros: This is the another MATLAB function implemented in MAPLE. It
generates as long zero vector as large the input is. Zero vectors are used for
marking the old Lie-products.

5.2 The main part of the program
At �rst we give the inputs to the program: the function set which contains
only the name f and g. If g is a matrix then g1, . . . , gn should be written.
Then we give the exact form of these vector functions. At last, we give the
state variable x as a vector of x1, . . . , xn.

After this, the program determines the number of the state variables, ∆0

from g1, . . . , gn and the rank of ∆0.
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According to the second step at the algorithm (see Eq. 2.36) a new dis-
tribution is calculated. Firstly, the [gi, ∆k−1] , i = 0, . . . , n Lie-products are
calculated and stored in vector product_temp. Because a distribution is a set
of vector functions, an element can be only once in it. That's why the Lie-
products which are already in ∆k will be replaced by zero vectors. Each turn
after the new Lie-products from [gi, ∆k−1] are selected, the program will gather
them either into the beginning of product_temp if i = 1 or after the last new
Lie-product calculated in the previous turn (i− 1).

When product_temp contains all the new Lie-products which are not in
∆k−1, the program builds a new matrix from them and from ∆k−1. At �rst, it
will copy the previous distribution into ∆k and then will put the elements of
product_temp after it.

The third step of Isidori's algorithm (see Eq. 2.39) is implemented such
a way that the program calculates the rank of ∆k. If it is greater than the
rank of ∆k−1 then this will be the new distribution and comes the next turn,
otherwise ∆k−1 will be the result. At last, the program transpose ∆k−1 to get
a form we know and use.
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6 Conclusions
I inspected in this diploma work some of the problems, that can occur in con-
trolling nonlinear fermentation processes: whether the system is controllable
or not and how the state variables behave when the output does not change,
i.e. the zero dynamics. Then, using these results I determined an appropriate
controller for the system.

Firstly, I investigated the controllability of the locally linearized model of
the continuous system because if this property does not hold then the origi-
nal nonlinear system is probably not controllable, as well. Fortunately, I got
favorable result. This method cannot be done in the case of fed-batch fer-
menter because there was no steady state point around which the linearization
could be done. Calculating the reachability distribution for nonlinear systems
showed that only the continuous process is controllable. After this, I calculated
the singular points of the distribution which should be avoided during control.
I got that this points are far from the optimal operating point.

Before designing and comparing di�erent type of controllers I had to get
to know how the system behaves when its output does not change so the
controller does not sense anything. The analysis of zero dynamics resulted in
two outputs for which the dynamics could be stable, and one output for which
there was no zero dynamics. These results will be published in a European
Control Conference (ECC) publication in 2003 [11].

Finally, I designed and simulated six di�erent controllers: pole-placement,
LQ cheap, LQ expensive, exact linearized controller and input-output lin-
earized controller for two type of outputs. I determined the stability region of
them, time and energy needed of control. Then I chose the one that reliably
stabilizes the whole process. This was the LQ cheap controller.

In section 5 a short description of a MAPLE realization of Isidori's algo-
rithm is written. This program is not only for fermentation processes, it works
for any type of systems. Only the necessary inputs should be given.
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7 Appendix A
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Figure 7.1: Time derivative of the Lyapunov function of the Pole-placement
controller

−0.4

−0.2

0

0.2

0.4 −5

0

5

−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

x1 
x2 

dV/dt 

Figure 7.2: Time derivative of the Lyapunov function of the LQR cheap con-
troller
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Figure 7.3: Time derivative of the Lyapunov function of the LQR expensive
controller
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controller
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Figure 7.5: Time derivative of the Lyapunov function of the input-output
controller with substrate feedback
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Figure 7.6: Time derivative of the Lyapunov function of the input-output
controller with the linear combination of biomass and substrate concentration
feedback
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8 Appendix B
with(linalg);
%This function calculates the size of a vector or matrix.
size:=proc(a) local h,i,row,column;

for i while h<>lasterror do
h:=traperror(a[i,1]);
if h=lasterror then
if i=1 then
row:=1;

else
row:=i-1;

�;
�;

od;
unassign('i','h');
for i while h<>lasterror do

if row=1 then
h:=traperror(a[i]);

else
h:=traperror(a[1,i]);

�;
if h=lasterror then
column:=i-1;
RETURN([row,column]);

�;
od;

end:
%Lie-product calculator function
Lie:=proc(a,b) local Lie_prod,i; global var_num;

Lie_prod:=evalm(multiply(jacobian(b,x),a)-multiply(jacobian(a,x),b));
for i to var_num do

Lie_prod[i]:=simplify(Lie_prod[i]);
od;
RETURN(Lie_prod);

end:
%A row-selector function. The input is the number of the row we want to select.
projector:=proc(a) local row,i; global Delta;

row:=array(1..var_num,[]);
for i to var_num do

row[i]:=Delta[a,i];
od;
RETURN(row);

end:
%This function compares two vectors

42



8 APPENDIX B

compare:=proc(a,b) local i,k;
k:=0;
for i to size(a)[2] do

if a[i]-b[i]=0 then
print(i,a[i],b[i]);
k:=k+1;

�;
od;
if k=size(a)[2] then
RETURN(true);

else
RETURN(false);

�;
end:
%This function generates a vector with length a containing zeros
zeros:=proc(a) local i,b;

b:=array(1..a);
for i to a do

b[i]:=0;
od;
RETURN(b);

end:
%Giving the inputs
function_set:=vector([f,g]);
f:=vector([-x1/(x2� 2+2*x1+3),4*x1/(x2� 2+2*x1+3)]);
g:=vector([-x1,-x2]);
x:=vector([x1,x2]);
var_num:=size(x)[2];
%Calculating Delta0
Delta:=array(1..size(function_set)[2]-1,1..var_num):
for i to size(Delta)[1] do

for j to var_num do
Delta[i,j]:=function_set[i+1][j];

od;
od;
print(Delta);
old_rank:=rank(Delta);
may_end:=false;
%Calculating the other distributions
for p while may_end<>true do

l:=1:
%The vector product_temp will contain the Lie-products
product_temp:=array(1..size(function_set)[2]*size(Delta)[1]):
for i to size(function_set)[2] do
k:=l:
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%We get an element from function_set and compute its Lie-products with Delta.
%Exactly k pieces.
for j to size(Delta)[1] do

product_temp[k]:=Lie(function_set[i],projector(j));
k:=k+1;

od;
%The Lie_products which are already in Delta will be zeroed. Product_temp will
%contain zero vectors and Lie_products which are not in Delta
for n from l to k-1 do
for j to size(Delta)[1] do
if compare(product_temp[n],projector(j)) then product_temp[n]:=zeros(var_num);
j:=size(Delta)[1];

�;
od;

od;
%The new Lie_products will be collected and will be put to the beginning of
%product_temp. The variable l will point at the next position after this list.
%When i reaches the end of function_set the product_temp will contain only
%new Lie_products.
for n from l to k-1 do

if compare(product_temp[n],zeros(var_num)) then
else
product_temp[l]:=product_temp[n];
l:=l+1;

�;
od;

od;
%Generating a new distribution which size is the sum of the size of Delta and the
%number of the new Lie_products
Delta_temp:=array(1..size(Delta)[1]+l-1);
for i to size(Delta)[1] do

Delta_temp[i]:=projector(i);
od;
for j to l-1 do

Delta_temp[j+i-1]:=product_temp[j];
od;
%Delta_temp is a vector containing vectors but it's not a matrix. Delta_new will
%be a matrix.
Delta_new:=array(1..size(Delta)[1]+l-1,1..var_num):
%Giving value to m(S) so that Maple could compute rank
m(S):=mmax*S/(K2*S� 2+S+K1):
for i to size(Delta_new)[1] do

for j to var_num do
Delta_new[i,j]:=Delta_temp[i][j];

od;
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od;
%Calculating the rank.
new_rank:=rank(Delta_new);
%To get a m(S) independent result we delete the value of m(S).
unassign('m(S)');
%Recomputing Delta_new for symbolic computing.
for i to size(Delta_new)[1] do

for j to var_num do
Delta_new[i,j]:=Delta_temp[i][j];

od;
od;
%Inspecting the ranks whether they changed or not.
if old_rank=new_rank then
may_end:=true;

else
Delta:=array(1..size(Delta)[1]+l-1,1..var_num):
for i to size(Delta)[1] do

for j to var_num do
Delta[i,j]:=Delta_temp[i][j];

od;
od;
old_rank:=new_rank;

�;
od;
%Transposing the result to get a known form of the distribution.
Delta:=transpose(Delta);
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