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1 Introduction

State estimation is a fundamental problem in both quantum information theory and
quantum control. In quantum control [2] its role is the same as in the classical control
theory, i.e. to give an estimate of the unmeasured time-dependent state variable in order
to be used in state feedback schemes. On the other hand, the measurement of a quantum
mechanical system is probabilistic, so even the measurement of a measurable quantity
asks for estimation methods, this is why state estimation is an important field in quantum
information theory [16, 17|, too.

To set up a quantum state estimation, or a quantum state tomography method, two
ingredients has to be given: the measurement strategy used for getting information,
and the estimator mapping the measurement data to the state space. If one uses a von
Neumann measurement, the projective nature of the measurement forces the use of several
copies of the same system being in the same state [20], what is in general rather difficult
to implement in practice. However, in certain physical circumstances, for example in
quantum optics, it is natural to have several copies of the quantum system in the same
state.

The properties of different state estimations are investigated here in the simplest case
of a quantum bit (qubit). This problem may be traced back to the seventies [7] and there
is a well-known measurement scheme called the standard scheme [17] for estimating the
state of a qubit. Although the state estimation problem is quite old, the interest in a
thorough mathematical analysis of the quantum state estimation procedures has been
flourishing recently [1, 6, 14, 19]. The methods using von Neumann type measurements
for qubits in both pure and mixed states are now quite well developed. For example,
an adaptive observable selection strategy based on a Bloch vector parametrization in
spherical coordinates and on a Bayesian estimation method of qubits in mixed states is
reported in the paper [5]. However, there are only a few papers [18, 20] that deal with
the properties of the estimate when a finite number of measurements are only available.
Here the quality of the estimate is usually characterized by the covariance matrix, the
trace of which can be minimized if an optimal scheme is to be determined.

The methods using von Neumann measurements are useless, if one aims at the estima-
tion of dynamically evolving states, as in quantum control. A possible way to circumvent
the obstruction of the demolition property of von Neumann measurements is to use an
indirect measurement scheme, where the 'unknown’ quantum system is coupled with a
‘measurement’ (also called 'probe’ or ’ancilla’) system and the measurements are only

applied on the measurement system [9, 11]. In the literature this method is often termed



weak measurement |4, 23|. Note, that most of the papers dealing with indirect or weak
measurement schemes use a continuous-time approach [10].

The first aim of this paper is to generalize the standard scheme such a way that we
are able to measure in non-symmetric way, i.e. we are not using the Pauli matrices as
observables and not measuring the same number in each directions. This can be useful
to decrease the variance of estimator if the qubit is nearly pure. A further aim is to
construct a compromising estimator, that finds the trade-off between the effectiveness of
the estimate and the number of qubits that are un-affected by the measurements. This will
be achieved using indirect measurement scheme in the discrete time case. The simplest
possible case is considered, where both the unknown and the measurement quantum
systems are quantum bits.

The paper is organized as follows. Chapter 2 clarifies the notation used throughout
the work and gives an introduction to the mathematics of quantum mechanics. At the
end of this chapter the main results are placed in the context of the related literature.
The generalization of standard scheme is discussed in Chapter 3. We will find the optimal
ratios of number of measurements and optimal observables, then giving an asymptoti-
cally optimal algorithm. Thereafter, some approximately efficient numerical approaches
are presented for the case of finite number of measurements. Chapter 4 presents a sim-
ple indirect measurement strategy and its properties. Then a comparison with other
known strategies are given and some modified versions are presented. Finally, Chapter 5

concludes.



2 Basic notions

This chapter summarizes the background used in this thesis. Sections 2.1, 2.2 and 2.3

follows the presentation of [17].

2.1 State of a quantum system

The states of finite quantum systems are represented by n x n density matrices (p()),

obeying the following 2 properties:

Tr(p(0)) = 1 (1)
p(6) >0 (2)

In the simplest case we are talking about the quantum bit (shortly qubit), which is the
key object of our examination. In this case p is a 2 X 2 matrix, and the so called Bloch

parameterization gives a geometrically clear viewpoint of the state-space:

1
p(H) = 5 (I + 910’1 + 920'2 + ‘930’3) y (3)

10 0 1 0 —i 1 0
I= » 01 = ; O2 = , O3 = ,
01 10 i 0 0 —1

1+6; 60, —i-0,
O, +i -0y 1—0s '

where

p(0) = %

The so called Bloch vector 6 gives an equivalent representation of the quantum states. It

is easy to see, that the second property of density matrices (2) transforms to
07 4+ 05+ 05 < 1,

in the Bloch-parametrization. It means, that the state space is the unit ball in R®. States
for which the equation holds are called pure states, all the others are mixed states. In
what follows, the states of a quantum bit will be represented either as a density matrix,
or as a Bloch vector.

In Section 4 we will couple two separated qubits. Let us denote the Bloch representa-
tion of the unknown system and the probe (measurement device), where both are qubits,

as

3 3
pS 2([ _'_ — 9@ UZ) Y pM 2(] + — 92 al)? ( )
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where 9;-9 are the Bloch parameters of the system qubit and 8 are the Bloch parameters
of the measuring qubit. The state of the composite system of two independent qubits is

represented as a 4 x 4 density matrix:

psiar = ps ® par. (5)

The above 4-level state is a special product state that reflect the fact that the two qubits
are separated. If the state of a 4-level system can be described in the form of convex

combination of product states

P12 = Z% ®Pz

then it is called separable state, else it is called an entangled state.
We can get the state of a subsystem of the composite system using the reduced density
operator. Denote the reduced density operator for the first subsystem of the state pio

with py, then
p1 = Trapia, (6)

where Tt is the partial trace over the second subsystem, i.e p; need to satisfy the equation

Tr (pr2(A © 1)) = Tr(p1 A) (7)

for all self-adjoint operators A on C?®2,

2.2 Dynamics

The Schrodinger picture is used here in discrete time that associates a unitary U to

the time-evolution of the system such that
pk+1) = U(k)p(k)U(k)". (8)
We will only use dynamics for the coupled 4-level system, and only in one time-step:

ps+m = Usim ps+m Ugynr (9)

The state of the composite system after the interaction is described by pgia in (9)
where Ug, ) is the overall system evolution unitary. Note that after the interaction the
resulting state ps. s will be entangled in the general case, even if the initial state pgyas
was separable (as in (5)).

When we are interested in the dynamical change of the system S, the first reduced

density matrix should only be considered:

ps = Trypsim (10)



where Try; is defined in (6 - 7).
In order to have a simple parametrization of the interaction (coupling) between the
unknown and measurement qubit, the Cartan decomposition [12, 21] of the discrete time

evolution unitary Ugy s is used in the form
Usynr = Lie™ Ly (11)
where Ly and Ly are in SU(2) ® SU(2), h € R and a € a with
a =1irealspan{o} @ o’ 05 @ o3 0f @ 03"} (12)

Because both L; and L, are in a product form, they describe the product of the local
dynamical effects LY and LM (i = 1,2), and the interaction is parameterized by three
real parameters a, as and as.

Therefore, the dynamical equation of qubit S in (10) becomes
ps = Ly Try (e ps @ pare™ ™) Ly (13)

where Ly = LY @ LM, Ly = L§ @ L3 both time dependent, and pg = L5psL5 , py =
Lé”pMLéV[*. In order to simplify the forthcoming computations, we consider the case with
no local dynamics, when LY = LM =11 (i = 1,2).

Instead of the unitary description (8) of the dynamics, we can use also the so-called
T-representation of the linear mapping 6(k — 1) — (k) that corresponds to the original
state transformation p(k — 1) — p(k) in (8) with a real 3 x 3 matrix 7', such that

O(k+1)=T0(k), (14)
so the T" matrix describes the effect of dynamics on the Bloch vectors.

Example 1 Let the unitary be the following:

US+M — e—ih(tnof@o‘{w) (15)

i.e. the qubits are interacting only in the x direction. Computing the dynamics according

to (13) we obtain that the system dynamics in T-representation is the following

1 0 0
fs= 1|0 cos(2a1h)  —sin(2a1h)0y; | Os, (16)
0 sin(2a1h)0ny cos(2a1h)

if there were no measurements performed.



2.3 Von Neumann measurements

In quantum mechanics measurements have a probabilistic nature. The subject of
measurements are self-adjoint n X n matrices, so called observables. Let the spectral

decomposition of an observable y be the following:
X=> AP (17)

Where ); are the different eigenvalues of x, and P; are the corresponding eigenprojections.
The possible outcomes of the measurement are the different \; eigenvalues and the

corresponding probability is

Prob(\;) = Tr(pP). (18)

A key element of quantum measurements is that it will change the actual state of the

quantum system to
PipP;

P = 19

if the outcome of measurement is ;.
Example 2 Measurement of the Pauli operator o :
If one considers the measurement of the observable oy, then the possible outcomes

are the different eigenvalues of the observable, i.e. +1. The probabilities of the different

outcomes are
Prob(+1) = TrpE. = 3(1+6,)

Prob(—1) = TrpE_; = (1 —6))

respectively, where the spectral decomposition of oq is

1 (11 1 1 -1
01:E+1—E—1:§ 11 —5 1 1 )

The state after measurement can be

o+ = [ +1, 0, or, ot =] -1 0 O]T

depending on the actual outcome.

2.4 Literature review

The state estimation methods developed for qubits in the literature are briefly de-

scribed in this section.



2.4.1 Standard method

We start with the most important method, the standard method [18], because we will
make comparison with the standard method in all other cases.

Three different kinds of measurements are performed, they are represented by the
three Pauli matrices o1, 09,03. Since all the three are unitary their eigenvalues (which

are the possible values of the measurement) are £1. If we measure o; on the state

p(0) = %

1+60; 0, —10,y
01 +i0y 1—103

then the probability of outcome +1 is

]_ .
Prob(+1;) = +2 i3

similarly to Example 2. From the physical point of view, 01,09 és o3 mean the spin
measurement in directions x, y and z, respectively.

Because of the high symmetry and the independency of components we can easily
make an estimation scheme for the state 6. Suppose, that m measurements are performed
in each three directions. Then the relative frequency v; of the outcomes +1 is a sufficient

statistic, so it is enough to use:

v; = —, where i = 1,2,3, and m; is the number of (+1)-s in the direction of i.
m

The least squares estimator is a widely known and used method which minimizes the
squared error. If the relative frequencies resulting from the measurements are v;, then
the deviation from the real value of the state can be written in the form (because of the

independent measurements, there are no cross terms):

m 1+6,\°
ers(v,8) = Z (Vi_ 9 )

1=1,2,3

We are going to minimize this expression. It is trivially minimal, when the expressions
in parenthesis are zeros. This way, knowing relative frequencies v;, an estimate can be

given for the Bloch vector 6:

[ ou, —1 ]
" (v) = | 21, —1 (20)
21/3 -1




Note that this estimation can provide physically meaningless result (the state will be
outside of the Bloch ball), but the probability of having false estimate asymptotically

vanishes as the number of measurement increases.

The covariance matrix (V/standard) of this estimator is the following:
) 1— 03 0 0
Vstandard — 0 1 — 9% 0 (21)
m
0 0 1—62
Because two matrices are usually not comparable, we will examine the traces of co-
variance matrices. If we have the opportunity to measure only N times, then m = %,
and the trace of the covariance matrix will be the following:
9 — 3|02
Tr V]\s]tandard(e) — ]V” ”2 (22)

2.4.2 Minimal qubit tomography

Rehacek, Englert and Kaszlikowski has noticed in 2004, that in the standard method
there is altogether 6 measurement directions, but in the 3 dimensional case it is enough to
measure in only 4 directions to get all the possible states [20]. So they did not measure in
the direction of the axis of the Bloch ball, but the projections were related to the vertices
of a regular tetrahedron, and they applied the maximum likelihood principle to get an
estimation for 6.

It is possible to calculate the covariance matrix of the estimator, but this is not
comparable with the covariance matrix of the standard method in most of the cases, but
if we compare the trace, then we get that the standard method is more efficient if 6 # 0
[18].

After all this conception is not useless, because they suggested an adaptive process,
too, which rotates the measurement directions so that a possible outcome becomes on
the opposite side of the assumed 6. This way they achieved that in that direction they
never or only a few times get an outcome, so they obtained a better result for pure states

than if they used standard method.

2.4.3 Indirect (weak) measurements

It is intuitively clear, that one must make a compromise between the information
gained in a measurement and the disturbance or demolition caused by it. The general

impossibility of determining the state of a single quantum system is proved in [3] whatever
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measurement scheme is used. This indicates that the efficiency or precision provided by
an indirect measurement scheme is necessarily smaller than that of a scheme that uses
von Neumann measurements.

A related problem to the state estimation is to prepare the state of a given system in
a specified way. Most papers apply some kind special dedicated measurements either to
drive the system into a desired state or to compensate for the 'measurement back-action’.
An application of weak measurements in bipartite state purification can be seen in [§],
where the authors also use continuous time dynamics. Korotkov and Jordan [13]| have
shown that "it is possible to fully restore any unknown, pre-measured state, though with
probability less than unity." A similar method will used in our approach, but we will

improve a discrete-time model and make a state estimation from the measurements, too.
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3 Optimization of the standard method

This chapter is devoted to a family of a methods that attempt to improve the standard
method by varying the number of measurements in different directions and by changing

the directions themselves.

3.1 Determination of optimal measurement directions and ratios

First we observe, that we measure in each direction the same number using the stan-
dard method independently of the state of the system. A possible way to improve the
measurement scheme is that we optimize the number of measurements in certain direc-
tions such that the total variance (trace of the covariance matrix) will be minimal.

Assume we are allowed to measure on only N identically prepared copy of the system
using the standard observable formed by the Pauli matrices and measure in the appro-
priate directions nq, ny and nz times (N = ny +ny + ng). Then similarly to the standard
method the measurements in a certain direction only depend on the appropriate 6;. But
the measurements are still independent in each direction and the estimator will be the

same as (20):

[ oy —1 ]
@) = | 2,1 | (23)
i 2v3 — 1 |
The difference that here:
v = %, where i = 1,2,3, and m; is the number of (+1)-s in the direction of 1.

Theorem 1 The total variance is minimal if

nl:ng:ngz\/l—efz\/1—95:\/1—93 (24)

Proof: Similarly to (22) the covariance matrix will be:

00
Vn17n2,n3 (‘9) = 0 1;55 0
2

12



Our aim is to minimize the trace of V}, ,, n,(0) for all possible ny, ng, ng (while for
the standard measurement scheme n; = ny = ng = n). This is a simple optimization

task: 52 52 52
1— 1-— 1-—
Ly 2 4 3

n no ns3

— min,

subject to: n; +ng +n3 = N.

We can solve the above optimization problem using a Lagrange-function:

1—62 1-62 1-62
L(ni,ng,n3, \) = - L4 - Z 4 - 3+)\-(n1+n2+n3—m)
1 2 3

From the necessary conditions for the minimum in each direction we obtain:

11— 1-6

ni n3 n3

A

Corollary 1 The minimal trace of covariance matric is:

2
Trvjczinimal(e) — % (\/]_ — 9% —+ \/1 — 9% + \/1 — 9%) (25)

We can compare it with the trace for the standard method (22) by using the efficiency

factor:

inimal (

2

Ty 9)_(\/1—9§+\/1—9§+\/1—9§)
n( ) a Tr‘/jsytlandard(e) a 9-3 (9% + ‘9% + 9%)

We can easily get that 0 < n(f) < 1, n(f) = 1 if and only if 6, = 6, = 05, when the

minimal and standard schemes coincide, and the smaller is the value of 7, the efficient is

the estimation.

We examine 2 important examples:

Example 3 If the state is in the z-axis direction, i.e. § = (x,0,0) then the efficiency is

(VI=a2 +2)
9 — 3a?
The value of the efficiency in x = 0 is n(0,0,0) = 1, and as the state gets closer to the

n(x,0,0) = (26)

surface the efficiency factor decreases monotonously (i.e. n'(x,0,0) < 0, if x > 0, and
7' (x,0,0) >0, if < 0). The value on the surface is n(1,0,0) = % So as the true state

approaches the surface, the minimal scheme becomes better and better (see Figure 1).

13
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0.85

0.8

0.75
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0

Figure 1: Efficiency along the axis (z,0,0)

Example 4 Consider the case when the state is on the surface, 62 + 03 + 62 =1
In this case we can observe a highly asymmetric pattern (see Figure 2): the measure-

ment scheme is the most effective if the true state is near the direction of one awis.

0.8
0.78
05 40,76

10.74

072

4

_‘,_-"' 0.7

0.68

Figure 2: Efficiency on the surface
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Theorem 2 The minimal scheme is the most effective on the Bloch sphere (|02 = )

in the azis directions.

Proof: Because TrV7, ....(0) = (9 —3r?) - L, so the variance of standard method is

constant on the whole sphere. Therefore it is enough to minimize (25):

TV iat() = (\/1 1 M)Q

subject to 67 + 603 + 03 = 2.

The above minimization problem can be solved by using spherical coordinates and
using criteria for partial derivatives, but because of symmetry it is simpler with the
Lagrange-method. Notice, that (25) is minimal if \/1 — 67 + /1 — 63 + /1 — 62 is min-

imal, so the corresponding Lagrange function is

L(61. 02,05, 0) = /1 — 67 4 /1= 63+ /1 — 62 4\ (63 4+ 63+ 6 — 1)
Its partial derivatives are equal to zero at the minima, so

2>\9,~—L—0, i=1,2,3

T

There are two different types of solutions to the above equations: 6; = 0, or §? ={constant

depending on A\}. So we get 3 different solutions from the derivative criteria

0 =6, =0 and 03 = r? (27)
2

91:0and9§:9§:% (28)
7,,2

A 20

If we examine these cases, we obtain that at (27) there are minimum places, at (28) there

are saddles, and at (29) there are maximum places. U

Theorem 3 With the optimal choice of the directions and the number of measurements

the variance of estimator can decrease to
1 2
TV i (0) = — (24 VI=77) . (30)

Proof: The statement is the consequence of Theorem 2 if we use such a coordinate
system, that one of the axes is in the direction of §. Then the state will be [r,0,0] in the

new coordinate system, so using (25) we get (30). O

Remark: The optimal case is equivalent to Example 3. The improvement from the
above modification can be seen on Figure 1 and the efficiency grows up to %, if the state

is on the surface.

15



3.2 Adaptive algorithm

In the realistic case we have an unknown 6, so the optimal measurement directions

and measurement ratios are unknown, too. Still the following statement is true:
Theorem 4 The optimal variance (30) from Theorem & is achievable asymptotically.

Proof: We will give a measurement strategy for all N so that if N goes to infinity the
limit of the total variance will be (30).

We need to make at least a draft, "orientation" estimate of the variance that can be
followed by a refining step that applies the optimal measurement number ratios. Accord-
ing to Theorem 2, we can achieve the best result if one of the measurement directions
points to the direction of the true Bloch vector. Therefore, if one rotates the measurement
directions after the initialization step driven by the draft estimate 5, then the final estima-
tion step can be performed by using the new directions and performing the measurements
with the optimal ratio.

With the above strategy we can easily get an asymptotically optimal algorithm. Let
be the length of initialization step N;,;. Then a sufficient condition is N;,; — oo and
% — 0 (for example by choosing Ny, = v/N). Then 0 will converge to 6, and our
estimation will be optimal with the number of measurements N — N,,;;. Since the variance
is a continuous function of the measurement direction and ratios and % — 0 so the
variance goes to (30).

There is only one problem with this scheme. Namely it can happen that our estimation
of # may fall outside of the Bloch ball, so ||5||2 > 1. In this case r > 1, so according
to Theorem 1, the optimal ratio will contain non-real numbers which is obviously not
possible. If our state is mixed (]|f]|2 < 1) then this problem does not arise, because the
probability that 0 fall outside of a circle with radius ¢ and center 6 goes to zero according
to the weak law of large numbers. So if € is small enough then the probability of falling
outside the Bloch ball (||f]|s > 1) goes to 0, too.

If the state is pure (||f||2 = 1), then the probability of falling outside the Bloch ball
(16]]2 > 1) does not go to zero. So we apply the following modification to the above
algorithm: We know that the estimator § is inside of the circle with radius g(N) and
center 6 with 1 — §(N) probability. So if we use a translation by €(N) on the estimator
§ in the direction of the center of the Bloch ball, then this estimator () will be inside of
the Bloch ball at least with 1 — §(N) probability. If (V) is constant then 6(N) goes to 0
according to the weak law of large numbers. It is then possible with a little change that

A~

g(N) goes to zero while 6(N) goes to 0, too. In this case we get an estimator () that is

16



inside of the Bloch ball with asymptotically 1 probability, and the estimator 0 goes to 0
(because €(N) — 0). So because of the continuity this estimation will be asymptotically

optimal. 0

Let us compare this result with the standard method (22). Unfortunately we can not
compare the above result with the minimal qubit tomography because the authors did
not present any analytical result for the variance, only numerical ones for special #-s. The

comparison can be seen in Figure 3.

The variance as a function of r
10 T T T

Coefficient of 1/n
(&)}
T

= = standard
2 — improved

| | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
The value of r

0 1 1 1 1

Figure 3: Comparison of different methods

Our estimation scheme is better than the standard one everywhere. Furthermore,
when we are closer to the surface the estimation is more efficient. That is because the
algorithm uses the asymmetry in the number of measurements and near the surface the

asymmetry is greater.

3.3 Numerical approaches for finite number of measurements

An almost surely asymptotically optimal measurement scheme was introduced in The-

orem 4, but in reality there is always a finite number of measurements available. So this

17



section contains the investigation of how the finite case changes the theoretical results.

In finite case we loose efficiency because the length of the initialization part is not
negligible. Therefore, an important question is how to select the length N;,;;. Another
crucial part of the algorithm described in Theorem 4 is that in finite case the draft
estimation goes outside of the Bloch ball with positive probability, which needs to be
handled. Here I give some possible algorithms to threat these problems.

In finite case the calculations of variance are really complicated so I investigate the
cases by simulations in MATLAB [15] to approximate the real variance of different esti-
mation schemes and compare it with the theoretical result (30). During the simulations
the whole estimation process was performed 10000 times and the mean square error was
computed. The simulations contain 3 different cases of the total number of measurements:
N = 1000, 3000, and 5000. These numbers come from the bound of computational ca-
pacity.

In order to investigate the behavior of the algorithm on different real states, we per-

form simulations on 3 different states:

e 0 =1[0.95,0,0]: a mixed state in the axis direction
e 0 =10.8,0.5,0.1]: a mixed state in a general direction
o (= [%, %, %] a pure state in a general direction

In all cases ||f||2 is chosen to be big because then the difference from the standard
method will be significant. The results of the simulations are interpreted in tables with
the same structure. In the first row the variance of standard method computed from (22)
can be found. This is followed by the mean square errors obtained from the simulations.

Finally the theoretical results from Theorem 4 are presented, computed from (30).

3.3.1 Using optimal ratios without rotation

The steps of the algorithm include an initialization giving a draft estimate using the

Ninit
3

In the initialization step a pre-defined function of the total allowable measurement

number N is used: N;,;; = N®. If 0 < a < 1 then Nj,; fulfills the conditions discussed in

standard scheme (m = ), that is followed by a final estimate.

Theorem 4. In our simulation experiments the values o = 0.75 and a = 0.9 are applied.
The optimal ratio of the measurement numbers ny, ny and nz (where ny +ns +nz = N)
was calculated from Theorem 1. In the final estimation step we measure in each direction
n; —m times, i.e. we take the number of measurements of the initialization phase also

into account.

18



In addition, there is a trade-off between the length of the initialization step deter-
mining the variance of the draft estimate 0 and that of the final estimation step. If the
initialization step is too short, then the draft estimation will be imprecise, so the optimal
ratio will be far from n;, ns, n3. On the other hand if the initialization step is too long

then we can easily “over-measure” in some direction, i.e n; < m = %, SO0 we can not
use the optimal ratios in the correcting step because we must measure n; —m times more

in each direction, and in this case it is a negative number.

0.95,0,0] | N—1000 | N—3000 | N—5000 || [0.8,0.5,0.1] | N=1000 | N=3000 | N=5000

standard | 0.00629 | 0.00210 | 0.00126 standard 0.0063 0.0021 0.00126

a=0.75 | 0.00553 | 0.00186 | 0.00109 a=0.75 0.00636 | 0.00202 | 0.00124

a=0.9 | 0.00527 | 0.00179 | 0.00106 a=09 0.00620 | 0.00202 | 0.00122

optimal 0.00535 | 0.00178 | 0.00107 optimal 0.00536 | 0.00179 | 0.00107

[%, % %] N=1000 | N=3000 | N=5000
standard 0.006 0.002 0.0012
a=0.75 | 0.00616 | 0.00203 | 0.00121
a=0.9 | 0.00600 | 0.00201 | 0.00119
optimal 0.004 | 0.00133 | 0.0008

Table 1: Simulation results using optimal ratios without rotation

The results of simulation can be seen in Table 1. Our first observation is that the
efficiency does not depend well on the length on initialization step, i.e from «. But we
get a bit better results for the a = 0.9 case. According to Theorem 2, if § = [0.95,0, 0]
then the variance is close to the optimal, but in the # = [0.8,0.5,0.1] and 6§ = [%, %, %]
cases the results are far from the optimal result because then the real state is not close
to an axis. In the last case when #; = 05 = 05 the variance of our method will be equal

to the standard case.

3.3.2 Using rotation with simplification

From Theorem 2 we know that if we want results to be close to the optimal variance
(30), then we need to rotate the axis of measurements. In reality this can be done by
rotating some mirrors (as in |20]) or using a Hamiltonian to rotate the state. The point
is that this can add some extra time to the measurement process, but if NV is big this will

be irrelevant.
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I will use the measurement scheme described in Theorem 4. The length of initialization
step will be N;,;; = N® with o = % and o = %. Then I rotate a measurement direction

in the direction of draft estimate 6. Then the optimal ratio (24) will change to

ﬁlz%:ﬁg:\/1—<§%+5§+5§>:1:1, (31)
because in the new coordinate system the state of system is approximately (||8]|2,0,0). If
the draft estimation is outside of the Bloch ball(||6]|; > 1), then in (31) will be a nonreal
(i.e. a complex) number. Let us use notation ¢(#) for the non-trivial element of ratio.
The simplest way is to handle the problem ||5||2 > 1, that in this complex case we use
a constant ratio, i.e. ¢(f) = c. In our simulations we use ¢ = 0.3 and ¢ = 0.1. Then
we measure another N — N;,;; times and get a new estimate 0 for the state of the qubit.
To avoid the loss of information from initialization step and get an unbiased estimate we

will use the N’]i(;” -0+ N_]J\\;’””t - 0 estimator during simulations.

[0.95,0,0] | N=1000 | N=3000 | N=5000 || [0.8,0.5,0.1] | N=1000 | N=3000 | N=5000
standard 0.00629 | 0.00210 | 0.00126 standard 0.0063 0.0021 0.00126
Oé*%,C*O.l 0.00593 | 0.00189 | 0.00112 Oé*%,C*O.l 0.00588 | 0.00205 | 0.00125
Oé*%,C*O.l 0.00611 | 0.00205 | 0.00117 Oé*%,C*O.l 0.00600 | 0.00199 | 0.00120
a*%,C*O.B 0.00552 | 0.00186 | 0.00111 Oé*%,C*O.?) 0.00557 | 0.00193 | 0.00116
a*%,C*O.B 0.00568 | 0.00188 | 0.00112 Oé*%,C*O.?) 0.00559 | 0.00186 | 0.00114
optimal 0.00535 | 0.00178 | 0.00107 optimal 0.00536 | 0.00179 | 0.00107

[ 75> 75 5] | N=1000 | N=3000 | N=5000

standard 0.006 0.002 0.0012

Oé*%,C*O.l 0.00487 | 0.00157 | 0.000935

CJZ*%,C*O 1 | 0.00473 | 0.00155 | 0.000930

« %,0:03 0.00494 | 0.00162 | 0.000987

a*%,c:O 3 10.00494 | 0.00162 | 0.000964

optimal 0.004 0.00133 0.0008

Table 2: Simulation results using rotation with simplification

From the simulation results (see Table 2) we can find that this case is not sensitive

to «, too. In case 6 = [0.95,0,0] and 6 = [0.8,0.5,0.1] the ¢ = 0.3 is more efficient, but

11
V323
the simple fact that the value of ¢(0) is closer to 0.3 in the first two cases, while in last

in case ¢ = [%, |, the ¢ = 0.1 value will have better variance. This corresponds to
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case p(0) is closer to 0.1. In all three cases the optimal variance is well approximated

but these variances attached to different parameters in different cases.

3.3.3 Using rotation with numerical Bayes estimation

From the previous part it is clear that for different 6 values different p(6) values are
optimal, so to obtain a better estimate we need to make an estimation from 0 to 0 even
if |6] > 1. We will use the numerical Bayes estimation to this purpose . We calculate
the probabilities to some element of a Cartesian grid in such a way that the total number
of the elements will be constant, so this calculation requires constant time even for huge
N values, thus it will be negligible. We only take into account the elements of the grid

that are inside of the Bloch ball so in this way we get an estimator 0* which is always

inside of the Bloch ball. In simulation we use ¢(6) = v - \/1 - ((5{)2 +(02)2 + (5{;)2),

1

with v = 3

the previous scheme.

and v = i. The other details of the measurement scheme is the same as in

0.95,0,0] | N=1000 | N=3000 | N=5000 || [0.8,0.5,0.1] | N=1000 | N=3000 | N=5000
standard | 0.00629 | 0.00210 | 0.00126 standard | 0.0063 | 0.0021 | 0.00126
a—%, v—3 | 0.00571 | 0.00190 | 0.00112 || o 2. v 3 | 0.00557 | 0.00189 | 0.00114
a—%,v—1 | 0.00610 | 0.00204 | 0.00120 || o 2. v 1 | 0.00593 | 0.00204 | 0.00123
a2 v-110.00566 | 0.00187 | 0.00113 || o 3 v 1 | 0.00552 | 0.00196 | 0.00120
a2 v-110.00590 | 0.00194 | 0.00116 || o 3 v 1 |0.00577 | 0.00210 | 0.00131
optimal | 0.00535 | 0.00178 | 0.00107 optimal | 0.00536 | 0.00179 | 0.00107

[%, % %] N—1000 | N—3000 | N-—5000

standard 0.006 0.002 0.0012

a=2, v=1 | 0.00484 | 0.00158 | 0.000936

a=2,v=1 10.00476 | 0.00155 | 0.000928

a=3, v=%1 | 0.00485 | 0.00158 | 0.000946

a=3 v=%1 10.00475 | 0.00159 | 0.000931

optimal 0.004 | 0.00133 | 0.0008

Table 3: Simulation results using rotation with numerical Bayes estimation

The data of Table 3 show that the situation did not change too much. The length

of the initialization does not affect well the efficiency, while for the § = [0.95,0, 0] and

1 1 1 ]

0 = [0.8,0.5,0.1] cases the bigger v is more efficient, but in case of § = [%, 757
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the smaller v will lead us to better result. However the differences have been reduced

compared to the previous algorithm.

3.3.4 Comparison of different algorithms

Instead of comparing the 10 different measurement schemes (see the rows of Table
1-3) let us choose the most efficient ones.
In case of no rotation the o = 0.9 case is the most efficient. Similarly, if we regard the

case with rotation using numerical Bayes estimation we can state that the v = 0.5 case

has better variances, let us choose a = % (so the first data row of Table 3). Finally, in

the case with rotation using simplification there are 2 nearly optimal but fundamentally
different cases with ¢ = 0.3 and ¢ = 0.1. Let us choose in both cases o = % (so the second
and fourth data row of Table 2). And finally we will plot the optimal variance (30).

To get comparable results for different § and N values we do not plot the variances
of each cases but the efficiencies, i.e we normalize the values with the variance of the
standard method.

Summary of the simulation results
1.05

[0.95,0,0] [0.8,0.5,0.1] [0.577,0.577,0.577]

0.95

0-9¢ *\.\I] A,-/I]

0.85 :70-<3 ——o—o
ol .\.\.

=@~ Without rotation
0.75 With simple rotation — c=0.1
=-@- With simple rotation — ¢=0.3
With rotation using Bayes method
=-@- Optimal value

Efficiency

0.7

*r—1—0

0.65 I I I I I I I I I
1000 3000 5000 1000 3000 5000 1000 3000 5000

Number of measurements

Figure 4: Comparison of efficiencies of different algorithms
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The results can be seen in Figure 4. The efficiency of the method without rotation
does not depend on the purity (from ||f||2), but on the distance from the axis. If the
real state is in the direction of an axis (6 = [0.95,0,0]), then the achieved variance is the
smallest, in other cases it is bigger. If we use rotation then the key determining factor
is the purity of the state. In the first two cases the value of ||f]|5 is roughly the same
just their direction are different, and indeed all three rotating measurement scheme has
similar efficiency even by different values of #. In the case of simplification there is a
recognizable difference between the light and dark blue marks. The numerical Bayesian
approach is a kind of compromising result, near the minimum of blue lines. Probably
with a better choice of gp(g) the variance can show further improvement but this is outside
of the scope of this thesis.

The fact is visible too, that the estimation of pure state is more complicated than
estimation of a mixed state since there is bigger gap between the simulation and theoret-
ical results. Note that all of these methods are more efficient than the standard one. All
of the methods begin with an initialization part so they can be combined to use of their
advantage, for example if we get that 0 is close to an axis then we do not use rotation

etc.
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4 Indirect measurement scheme using coupled qubits

Indirect measurement means that the projective measurements are performed on the
probe system (being in state 6,,) attached to the one we are interested in (fg). In the
composite system (in state psy /) an indirect measurement corresponds to the observables
of the form I ® Ay, where A); is a self adjoint operator on the Hilbert space of system

M. For the sake of simplicity, it is assumed, that A, is a Pauli spin operator. The

Bs(k+1)
6s(0) )y
" Coupling: N Development: |, Measurement:
eM_» ax:ayaaz h I®(71
1

Figure 5: Signal flow diagram of indirect measurement

measurement strategy is shown in Fig. 5. At each time instant of the discrete time set,
the measurement qubit is coupled to the unknown system S. They evolve according to
the bipartite dynamics (13) for the sampling time h, and at the end of the sampling
interval, a von Neumann measurement is performed on the measurement qubit. At the
next time instant, the previous steps are repeated.

The above setting of the indirect measurement allows us to adjust various parameters
of the measurement strategy. These can be and will be used to make an optimal compro-
mise between the information gained from the measurement and the demolition caused
by the measurement back-action.

The coupling parameters ay, ag, ag of the Cartan decomposition (11-12) determine how
(in terms of strength and direction) the measurement system is coupled to the unknown
one. The sampling time h amplifies this effect and appears as a multiplicative factor to
the coupling parameters.

The state of the measurement qubit (6),) can be different at each time instant which
allows us in the future to introduce a feedback to the measurement protocol.

It is important to note that one can make a 'no information - no demolition’ situation
by setting the coupling parameters to zero, and a 'maximal information - complete de-
molition’ situation, too. Examples of such extreme cases will be given in the subsection
4.1.2 and 4.2.2.
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4.1 A simple example for indirect measurement

A simple special case of an indirect measurement is investigated analytically here
to brighten the effect of the protocol parameters. As we shall see later, this case can
be used to selectively estimate one of the components of the unknown qubit’s Bloch
vector, similarly to the so called standard measurement scheme |18] for single qubits. A
straightforward modification of the measurement setup leads to the estimators of the

other two Bloch vector components.

4.1.1 Measurement setup

Suppose in the sequel that the qubits are interacting only in the y direction for time A
(sampling time). Afterwards, an indirect measurement is performed, i.e. a von Neumann

measurement of the observable I ® o, on the composite system with state

—ih(agos @ad)*

pS®pM)'e )

o~ ih(azo3 ®03") (

For the sake of simplicity, choose h and as in such a way, that 2ash = 27. The above

setting corresponds to the parameters

1 5
h=—, ay==m,

10 9 CL1:CL3:O.

The probabilities of the different outcomes of I ® 0,’s measurement are

PI'Ob(“‘].) = %(1 + 95291\/[3)
(32)

PrOb(—l) = %(1 — 95291\43).

Now the probabilities depend on both the state of the unknown fg and that of the

measurement qubit 6,;. The post-measurement states are

[ 05390m2+05100m1 ] 053002—051001
1+0s20nr3 1-0s20n13
+1 _ 059403 -1 _ 0so—0n3
HS o 1+052001 3 ’ HS o 1-0520013 (33)

0530n1—0510Mm0

1+95291w3

—0530Mm1—0510Mm0

1—95291w3

if +1 or —1 was the result, respectively. This measurement setup is useful for unknown
state estimation since the probabilities and the new states depend on both 6 and 6.
This means, that we both gain information from the measurements and retrieve informa-

tion in the new states after the measurement.
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4.1.2 Properties of repeated indirect measurements

Let us concentrate on the estimate of the second unknown state co-ordinate, i.e. we
want to describe the change of 0gy (notation: x = fgs) during the measurements. Let us
further assume that 6,3 is constant (denoted by ¢) and 0y = Oyo = 0,1.e. 0y = [0,0,¢]T.

If ¢ =1 then we get the standard measurement scheme, where
1
Prob(+1) = 5(1 +z) , =41

It is easy to see from (33) that this would be a totally invasive measurement, i.e. the

information about the true state would be lost, thus we assume |c| < 1.

Propostion 1 If we measure first +1, and thereafter -1 (or vice versa), then the state

of Oso (—x) will not change.

Proof: After the first measurement, x changes to ! = Z*¢ then from z*! it turns to

14-cz
+1,—-1 ztl—c 1:6;:‘;_6 S
be 77" = =55 = %55+ = - - = . The reverse goes similarly.
1+4cx

Corollary 2 All of the possible cases of states can be ordered in a line such a way, that

after each measurement we jump in the neighboring state on the left or right side.

Propostion 2 If we measure first +1, and thereafter -1 (or vice versa), then the proba-

bility of these outcomes doesn’t depend on .

Proof: First from x it will be 27" = £ with probability: P = 2(1 + cz) then from

o it will be  with probability: @ = (1 — ca™) = (1 — ¢&2) = %;zi So the
1—

o2 ..
< The reverse goes similarly.

probability of this outcome is P - () =

Corollary 3 If two outcome sequences contain the same number of +1 and —1 measure-

ment outcomes, then their probabilities are the same.

Corollary 4 The probability that there are k times +1 and [ times —1 outcomes (k > 1)

in the sequence can be computed as:

11—\
( 4 )'pk—l

and the state after this sequence of outcomes will be xy_;, where p, is the probability

of that from n measurements all outcomes are +1s, and x, is the resulting state from
n measurement when all outcomes are +1s. So we can represent the sequence of the

measurement outcomes as a Markov-process.
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Propostion 3 p; is a linear function of x.

Proof: The proof goes by induction. Let py, := & and z := g—:, where (we will prove)
qr and y; are simple polynomials of ¢ and .

If £ =0 then gg =py =1 and yy = .

Next let us suppose that both g, and y; are simple polynomials, and py is linear in x.
Then

1 a1 Yk 1
Dr+1 :pk'§(1+03€k> =9k 3 (1+Cq—k) = W'(Qk"‘cyk).

On the other hand pyy; = g,ﬁ%, SO

Qkt+1 = Gk + CYk- (34)

Furthermore,
e O _yetea _ynten
Ltcoe  1+cl g+ cyp Qrp1

Tk41 =

On the other hand zp,, = z:—i, therefore

Ye+1 = Yk + CQ. (35)

Finally we conclude that g and y, are really simple polynomials, and from the recursion
it can be seen that both ¢ and y, are linear in x, so pi is linear in x, too.

The proof gives us a recursive calculation for z; and py, so it is possible to build up
a stochastic model based on the above 3 propositions, and develop a state estimation

strategy.

4.2 Towards optimal quantum state estimation by indirect mea-

surements

Let us suppose that we have N identical copies of the composite quantum system (the

two coupled qubits, S and M). We shall use the following measurement strategy:

1. Perform 2 subsequent measurements (a measurement pair) on each copy with a

pre-specified ¢ = 03 and compute the maximum-likelihood (ML) estimate of z.

2. Retain the copies on which the measured outcomes were +1 and —1 (in any order)
for further studies, because they are not affected by the measurements, i.e. their

0o = x is left unchanged (see Proposition 1).
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Note that the above implies n = 2 for the results in sub-section 4.1.2. Now we investigate
how the selection of ¢ (the initial state of the measurement system) affects the variance
of the estimate (we want it to be small), and the ratio of the un-affected system copies
(we want this to be large).

Denote the number of the (+1,41) outcomes by N, and the probability that a

14+c?42cx
4

measurement pair result in this outcome by p, = ps = . Similarly, the number

of the (—1, —1) outcome is denoted by N_, and its probability is by p_ = %{2“‘3. Then
the number of the non-effective ((+1,—1) or (—1,+1)) outcomes is Ny = N — N, — N_,

1—c?
2

the following polynomial distribution:

and its probability is pg = . Then the likelihood function of N measurement pairs is

N! Ny N
P=NaNawa P - P’ (36)
The maximum likelihood estimate of x is obtained by taking the logarithm of P in (36),

and maximizing it with respect to x:

. 1+ N, —N_
xML(N-F’N—?C): 2¢ Ni‘i‘N

This estimate is well-defined if at least one of N, or N_ is positive, that holds with

(37)

probability one when number of measurements goes to infinity. On the other hand, this

estimate is asymptotically unbiased.

4.2.1 The variance and the non-demolition probability

In the case of the investigated measurement setup (see section 4.1.1), the variance

Vv of the Maximum Likelihood estimator (37) is as follows:

N
Vy(e,x) = Y Var <1+—02M | Ny + N_ = z) -Prob(Ny + N_ =i) =
=1

2c N++N,

- (1;—)2 L Var (Ny — N_ | Ny + N_ = i) - Prob(N, + N_ =)
- (38)
where Var(.) denotes the variance of a random variable.
Let be X; a random variable that takes the value +1 if the outcome of the mea-

surement pair is (4+1,+1), and —1 when the outcome is (—1,—1). Then X; = 1 with

probability prr*pJ and X; = —1 with probability pf:p,' These are the conditional prop-

erties of being +1,41 and —1,—1, if we know that the two outcome is the same. Then

Var (Ny — N_ | Ny + N_=1i)=Var (Z X]-) =1i-Var(Xy).
j=1
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From simple calculation we obtain:

2 2
o 2
var(X1)=1—<u) :1—( Cx)
p+ +p- 14 ¢

Therefore, the variance of the Maximum Likelihood estimator is

1+c2\? 2cx \2
VN(C’x):< 2¢ ) [1_(1+02)

N
1 1 1
d 3 = Prob(N, + N =) =B v
nd D G - Prob(y )=E (3w ) ~ o

where [E denotes the mean value, and ~ stands for asymptotic equality. Thus we obtain:

Yo
> = -Prob(Ny + N_ =),

- 2
=1

, (41 —4a®
]\}I_I)ICIXJNVN(C, T) = 20+ ) =W(e, z)

The other important aim would be to minimize the disturbed system instances, i.e. the
cases when the outcomes are (+1,+1), or (—1,—1). The probability of having such
outcomes is p(c,z) = 3 (1+¢*). Note that W(c,z) can be regarded as the asymptotic
variance originating from a qubit, and p(c, x) as the probability that the state of qubit

will remain unchanged during the estimation process.

4.2.2 Optimal measurement strategy

If one wants to have a compromising strategy, then a possible way is to minimize the

expression

U(c,x) = min [A-W(c,x)+(1—A) plc,x) ], (39)

where A € R* is a normalized parameter (1 > A > 0) which determines our trade-off
strategy. If A = 1, then the aim is accuracy, while in the case of A ~ 0 we aim at minimal
demolition.

Figure 6 shows the substantial part of the loss function ¥(c,z) over the domain
(-1 <z <1),(0.2<c<1). Note that the function is symmetric to the ¢ = 0 line, but
it is indefinite at ¢ = 0. It is seen that there is a definite optimal value ¢ ~ 0.6 for the
initial state of the measurement qubit in case A = 0.1 that is the same for every x. In the
case of A = 0.9, however, the minimum is taken at ¢ = 1, i.e. at the complete demolition

situation.
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Value of the object function for A=0.9 Value of the object function for A=0.1
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Figure 6: The optimal measurement qubit state for different A values: more information

(A = 0.9, left) versus more non-demolished system (A = 0.1, right)

4.2.3 Comparison with the standard method

It is possible to compare the above estimation scheme with the so-called standard
qubit tomography described in subsection 2.4.1, which uses information obtained from
the von Neumann measurements of the three Pauli matrices.

For the sake of reasonability, it is assumed that the number of measurements m for
the standard qubit tomography equals to the expected value of the changed qubits in
indirect scheme, i.e. m = N - p(c,z). This way, the expected number of destroyed qubits
will be the same in the two compared methods.

The variance of the standard method is V" = % - (1 — 2?) if the number of mea-
surements is m. In this case m = N - 1202, so Wstan(¢ x) = N - Vstan = 20228 We can

1+c2
define efficiency 7 as the quotient of W (c, z) and W5 (¢, z), i.e.

 Wl(ez)  (c+1/c)?—4a? 1+ le+1/e) —a? .-
C Wstan(e ) 2(1 4+ 2) 2(1 —a2) 1—a? -

because |c¢+ 1/¢| > 2, equation holds if ¢ = £1.
The above result clearly shows, that the standard method is more accurate than the
indirect one. Note, that if ¢ = £1, the two methods are the same, i.e. the standard qubit

tomography is the special case of the indirect method (see Figure 7).
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Figure 7: The efficiency n (blue) compared to constant one (red).

4.3 Modified methods

This section deals with possible modifications of the original method in order to

improve its efficiency.

4.3.1 Recycling the unchanged qubits

The idea in the following is to use the qubits which remained unchanged during the
indirect measurement to obtain more information about the state. So the measurement
procedure is continued on the unchanged qubits until all of them is changed.

The variance of this modified method comes as the special case of the variance (38)

of the method defined in section 4.1.1 with ¢+ = N. It is easy to see, that

14+ N, — N_ 1 2cx \°
VNy(C,l’):VCLT‘< 5 N::jLN_|N++N_:N):N-[1—(1+62)

The variance of standard method for N qubits is V{**(¢,z) = & - (1 — z%). Computing

31



their quotient, it is

2
recyc recyc 2cz \ 2 1-— (c x_c)
recyc wree (C7 ZE') _ VN Y (C7 ZE') o 1 - (1—1—02) - +21/ >1
Wstan(c, x)  Vila(c, x) 1 — a2 1— a2 -

’)7 =
since |c + 1/¢| > 2. It means, that the indirect method cannot overcome the standard
one even in the case when all the available qubits are measured.

However, it is expected that the modified estimation is more effective, than the original

one. The fact, that 7 = 7% - 1(c + 1/c)? supports these expectations, i.e. n > nreeve.

4.3.2 Measuring four times

As another way of modification of the method described in subsection 4.1.2, it is
possible to change n, i.e. the number of subsequent measurements performed on the
coupled qubits. In what follows, n is assumed to be 4. This implies that the number
of possible outcomes are 2% = 16, but according to Proposition 1 and Proposition 2 the
outcomes like {+ — ——}, {—+——}, {— —+—} and {— — —+} are indistinguishable and

correspond to p_o (see Figure 8).

1st measurement

2nd measurement

34 measurement -

4" measurement - » ()
Pia P.o Po P P4

Figure 8: The possible outcome-combinations result in five different probabilities

P+4,P+2,P0,P-2,P-4-

The probabilities of such groups of outcomes can be determined using the result of

Corollary 4 multiplied by the appropriate binomial coefficients:

pra = (146 +c +4c(l+2)a)

pos = 15 (14624 —4e(1+2)a)
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pro = 2(1—¢)(1+ A+ 2cx)
po = 1(1—¢) (14— 2cx) (40)

2
po = S(1-¢%)

Using the probabilities (40) it is easy to construct estimators similar to (37):

1+C2 N2 —N_2
2c NQ"‘N_Q

i’l(Ng,N_g,C) = (41)

1+6c24+c* Ny —N_y
4e(1+c?) Ny+ N_y

Estimators (41) and (42) are independent, thus it is possible to use a linear combina-

L%Q(N4,N_4,C) = (42)

tion of them as an estimation:
Z(Ngy N_g, Ny, N_4,¢) = B - 21(Noy N_9,¢) + (1 — B) - 3(Ny, N_y4, ¢), (43)
where 0 < B < 1. In order to have an efficient estimator (43), it’s variance
B* - Var(i)) + (1 — B)? - Var(i,)

should be minimal. The covariance has been omitted because of the independency of
estimators (41) and (42). Similarly to the derivation in subsection 4.2.1, the variances of
the independent estimators are obtained as:

N 1+ct + 2 (2 — 4a?)
Wi(e,z) = 2c2 — 2¢8

and
1 2 8x?

W2 = —
(o) =5a+ 1+2)? 1+6+cv

using W = lim N - Var. The minimal value of the variance is where its derivative is 0.
N—o0

It is reached with the following value of B:

(=1 + ) (— (1462 +c)?+162 (1 + ) x2>

B —
2(1+c2(10424¢% —2¢* — S +2 (14 ¢2) (=5 — 6¢% + 3ct) 22))

The optimal value of the variance is then

(1+c*)? =4z (1+6c2+c* —de(1+ ) ) (1+6¢2+ c* +4c(1+ %) )
42 (1 + 2 (11 + 3462 + 2264 — 366 — B + 2 (1 + )2 (=5 — 6¢2 + 3ch) :172)) '

Wfom(c, x) =
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Since our other aim is to change as few qubits as possible, it is necessary to write
up the ratio of changed qubits. This is simply the complementary probability of being
unchanged, i.e.

pfO“T(c,x) -1 —po = 1— g (1 B 02)2

The efficiency is the following:

four __

wiow(e,z) - (1-2(1 - ))
n 1 2 .
— X

Figure 9 shows, that the relation 1 < n/°“" < 5 holds, i.e. the modification has slightly
improved the performance of the estimator, but it is still worse than the standard one and

the estimator formula is much more complicated. It can be seen in the case of both the

1200 """

four

as s

Figure 9: The quotients 1 (blue) and 77" (green) compared to constant one (red).

original and the modified estimator’s n, that for a given measurement state with ¢ # +1,
7 is minimal, if x = 0. This means, that the estimators can achieve smaller variance

(better performance) in the case of mixed states.
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4.3.3 Undoing the measurement

In this case we use the method described in Section 4.2, perform the estimation, and
then we re-measure the changed qubits until they get back to the initial state, i.e. until
there is an equal number of measuring +1 and -1 outcomes.

Each path that returns in 2k steps to the origin has the probability (%)k (the
number of + and - outcomes is both k). At the same time the number of pathes that

return to the initial state first in the 2k-th step is exactly 2 - C,_1, where C}, is the k-th

Catalan number. Let us use the notation r = 1_402, so the probability that the state will

ever return to the initial state, i.e we can undo the measurement, is

1 — pundo(c, x) = 22 cChqy TP = QZCk phtt = QTZCk r*.

The finally received sum is the generating function of Catalan numbers, and it has a well

known closed formula:

> 1—+v1—4
Dot
k=0

2r
from that
1—v1—4 1—¢
1___pundo(c’10 = 9. _____25_____C =1—-+1—-4r=1-— 1—4 4:6 =1 —-|C|
r
1200, L B T AR oo I:lnundo

: : N -T]

[

undo

undo

Figure 10: The efficiency n
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and we get that the probability that the qubit never returns pd(

c,x) = |c|. So
according the previous section (W (c ) = W (c, z)) the efficiency is the following (see

also Figure 10):
i ) (c+1/c)* —42? ||
21+ ) 1-a2

The greatest improvement is at small ¢ values, but the original efficiency (n) is the

undo __

worst exactly here. Therefore, the situation is like in previous cases: we have achieved an
improvement in the efficiency but it is still under the efficiency of the standard method,
i.e. 1 < nunde < g (see Figure 10). Note that this calculation gives back the trivial fact,

that in the standard case (c = 1) we never return to the original state: p*"% = 1.
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5 Summary

In this thesis several state estimation methods for a single qubit have been developed
and examined. Wooters and Fields showed that the observable set consisting orthogonal
observables results in the most information 24|, so many people think that the standard
scheme is optimal.

In Chapter 3 some kind of generalization of the standard scheme was proposed. The
variance of the estimation with different number of measurements was investigated and
it was shown that we can achieve better variance if we do not measure the same number
in each direction but in a determined ratio which depends on the real state of the qubit.
Moreover, the variance will be optimal if one of the observables is in the direction of
the state of the quantum bit. Since the state of qubit is unknown, we have proposed
a two-step algorithm to achieve the optimal variance asymptotically with probability 1.
This way we can improve the variance if the state is not [0, 0, 0], while the modification is
more efficient when the state is more closer to the surface of Bloch ball. That is because
the method is using asymmetry, and near the pure states the asymmetry increases. Some
numerical methods for the finite number of measurement case have also been developed
in order to help the application of the method in realistic circumstances.

Chapter 4 presents indirect qubit tomography methods in the discrete-time case [22].
The statistical properties of the estimate in terms of the variance of the ML estimator and
the non-demolition probability have been analytically calculated in the case of subsequent
measurements applied in the x direction while the qubits interact in the y direction
and the initial Bloch-vector of the measurement qubit is [0,0,¢]. A way of finding an
optimal compromising measurement strategy between the asymptotic variance and the
non-demolition probability has been proposed. The efficiency of the results have been
compared with a classical ’standard’ state estimation procedure available in the literature.
Although the classical one performs better by means of the variance, the indirect one gives
a degree of freedom in the above mentioned trade-off problem. The estimation method
has also been modified in a few ways to improve its precision. It has been shown that
the modified measurement strategies may reach the efficiency of the standard method in
the limit when the complete demolition situation is achieved. This is in good agreement
with the results of D’Ariano and Yuen [3].
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