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1 IntrodutionState estimation is a fundamental problem in both quantum information theory andquantum ontrol. In quantum ontrol [2℄ its role is the same as in the lassial ontroltheory, i.e. to give an estimate of the unmeasured time-dependent state variable in orderto be used in state feedbak shemes. On the other hand, the measurement of a quantummehanial system is probabilisti, so even the measurement of a measurable quantityasks for estimation methods, this is why state estimation is an important �eld in quantuminformation theory [16, 17℄ , too.To set up a quantum state estimation, or a quantum state tomography method, twoingredients has to be given: the measurement strategy used for getting information,and the estimator mapping the measurement data to the state spae. If one uses a vonNeumann measurement, the projetive nature of the measurement fores the use of severalopies of the same system being in the same state [20℄ , what is in general rather di�ultto implement in pratie. However, in ertain physial irumstanes, for example inquantum optis, it is natural to have several opies of the quantum system in the samestate.The properties of di�erent state estimations are investigated here in the simplest aseof a quantum bit (qubit). This problem may be traed bak to the seventies [7℄ and thereis a well-known measurement sheme alled the standard sheme [17℄ for estimating thestate of a qubit. Although the state estimation problem is quite old, the interest in athorough mathematial analysis of the quantum state estimation proedures has been�ourishing reently [1, 6, 14, 19℄. The methods using von Neumann type measurementsfor qubits in both pure and mixed states are now quite well developed. For example,an adaptive observable seletion strategy based on a Bloh vetor parametrization inspherial oordinates and on a Bayesian estimation method of qubits in mixed states isreported in the paper [5℄. However, there are only a few papers [18, 20℄ that deal withthe properties of the estimate when a �nite number of measurements are only available.Here the quality of the estimate is usually haraterized by the ovariane matrix, thetrae of whih an be minimized if an optimal sheme is to be determined.The methods using von Neumann measurements are useless, if one aims at the estima-tion of dynamially evolving states, as in quantum ontrol. A possible way to irumventthe obstrution of the demolition property of von Neumann measurements is to use anindiret measurement sheme, where the 'unknown' quantum system is oupled with a'measurement' (also alled 'probe' or 'anilla') system and the measurements are onlyapplied on the measurement system [9, 11℄. In the literature this method is often termed3



weak measurement [4, 23℄. Note, that most of the papers dealing with indiret or weakmeasurement shemes use a ontinuous-time approah [10℄.The �rst aim of this paper is to generalize the standard sheme suh a way that weare able to measure in non-symmetri way, i.e. we are not using the Pauli matries asobservables and not measuring the same number in eah diretions. This an be usefulto derease the variane of estimator if the qubit is nearly pure. A further aim is toonstrut a ompromising estimator, that �nds the trade-o� between the e�etiveness ofthe estimate and the number of qubits that are un-a�eted by the measurements. This willbe ahieved using indiret measurement sheme in the disrete time ase. The simplestpossible ase is onsidered, where both the unknown and the measurement quantumsystems are quantum bits.The paper is organized as follows. Chapter 2 lari�es the notation used throughoutthe work and gives an introdution to the mathematis of quantum mehanis. At theend of this hapter the main results are plaed in the ontext of the related literature.The generalization of standard sheme is disussed in Chapter 3. We will �nd the optimalratios of number of measurements and optimal observables, then giving an asymptoti-ally optimal algorithm. Thereafter, some approximately e�ient numerial approahesare presented for the ase of �nite number of measurements. Chapter 4 presents a sim-ple indiret measurement strategy and its properties. Then a omparison with otherknown strategies are given and some modi�ed versions are presented. Finally, Chapter 5onludes.
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2 Basi notionsThis hapter summarizes the bakground used in this thesis. Setions 2.1, 2.2 and 2.3follows the presentation of [17℄.2.1 State of a quantum systemThe states of �nite quantum systems are represented by n×n density matries (ρ(θ)),obeying the following 2 properties:
Tr(ρ(θ)) = 1 (1)

ρ(θ) ≥ 0 (2)In the simplest ase we are talking about the quantum bit (shortly qubit), whih is thekey objet of our examination. In this ase ρ is a 2 × 2 matrix, and the so alled Blohparameterization gives a geometrially lear viewpoint of the state-spae:
ρ(θ) =

1

2
(I + θ1σ1 + θ2σ2 + θ3σ3) , (3)where

I =

[
1 0

0 1

]
, σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0

0 −1

]
,that is

ρ(θ) =
1

2

[
1 + θ3 θ1 − i · θ2

θ1 + i · θ2 1 − θ3

]
.The so alled Bloh vetor θ gives an equivalent representation of the quantum states. Itis easy to see, that the seond property of density matries (2) transforms to

θ2
1 + θ2

2 + θ2
3 ≤ 1,in the Bloh-parametrization. It means, that the state spae is the unit ball in R

3. Statesfor whih the equation holds are alled pure states, all the others are mixed states. Inwhat follows, the states of a quantum bit will be represented either as a density matrix,or as a Bloh vetor.In Setion 4 we will ouple two separated qubits. Let us denote the Bloh representa-tion of the unknown system and the probe (measurement devie), where both are qubits,as
ρS =

1

2
(I +

3∑

i=1

θS
i σi) , ρM =

1

2
(I +

3∑

i=1

θM
i σi), (4)5



where θS
i are the Bloh parameters of the system qubit and θM

i are the Bloh parametersof the measuring qubit. The state of the omposite system of two independent qubits isrepresented as a 4 × 4 density matrix:
ρS+M = ρS ⊗ ρM . (5)The above 4-level state is a speial produt state that re�et the fat that the two qubitsare separated. If the state of a 4-level system an be desribed in the form of onvexombination of produt states

ρ12 =
∑

i

αi ρ
(i)
1 ⊗ ρ

(i)
2then it is alled separable state, else it is alled an entangled state.We an get the state of a subsystem of the omposite system using the redued densityoperator. Denote the redued density operator for the �rst subsystem of the state ρ12with ρ1, then

ρ1 = Tr2ρ12, (6)where Tr2 is the partial trae over the seond subsystem, i.e ρ1 need to satisfy the equation
Tr (ρ12(A ⊗ I)) = Tr(ρ1A) (7)for all self-adjoint operators A on C

2⊗2.2.2 DynamisThe Shrödinger piture is used here in disrete time that assoiates a unitary U tothe time-evolution of the system suh that
ρ(k + 1) = U(k)ρ(k)U(k)∗. (8)We will only use dynamis for the oupled 4-level system, and only in one time-step:
ρ̂S+M = US+M ρS+M U∗

S+M . (9)The state of the omposite system after the interation is desribed by ρ̂S+M in (9)where US+M is the overall system evolution unitary. Note that after the interation theresulting state ρ̂S+M will be entangled in the general ase, even if the initial state ρS+Mwas separable (as in (5)).When we are interested in the dynamial hange of the system S, the �rst redueddensity matrix should only be onsidered:
ρ̂S = TrM ρ̂S+M (10)6



where TrM is de�ned in (6 - 7).In order to have a simple parametrization of the interation (oupling) between theunknown and measurement qubit, the Cartan deomposition [12, 21℄ of the disrete timeevolution unitary US+M is used in the form
US+M = L1e

ahL2 (11)where L1 and L2 are in SU(2) ⊗ SU(2), h ∈ R and a ∈ a with
a = i realspan{σS

1 ⊗ σM
1 , σS

2 ⊗ σM
2 , σS

3 ⊗ σM
3 } (12)Beause both L1 and L2 are in a produt form, they desribe the produt of the loaldynamial e�ets LS

i and LM
i (i = 1, 2), and the interation is parameterized by threereal parameters a1, a2 and a3.Therefore, the dynamial equation of qubit S in (10) beomes

ρ̂S = LS
1 TrM

(
eahρ̃S ⊗ ρ̃Mea∗h

)
LS∗

1 (13)where L1 = LS
1 ⊗ LM

1 , L2 = LS
2 ⊗ LM

2 both time dependent, and ρ̃S = LS
2 ρSLS∗

2 , ρ̃M =

LM
2 ρMLM∗

2 . In order to simplify the forthoming omputations, we onsider the ase withno loal dynamis, when LS
i = LM

i = I (i = 1, 2).Instead of the unitary desription (8) of the dynamis, we an use also the so-alledT-representation of the linear mapping θ(k − 1) 7→ θ(k) that orresponds to the originalstate transformation ρ(k − 1) 7→ ρ(k) in (8) with a real 3 × 3 matrix T , suh that
θ(k + 1) = Tθ(k), (14)so the T matrix desribes the e�et of dynamis on the Bloh vetors.Example 1 Let the unitary be the following:

US+M = e−ih(a1σS
1
⊗σM

1
) (15)i.e. the qubits are interating only in the x diretion. Computing the dynamis aordingto (13) we obtain that the system dynamis in T-representation is the following

θ̂S =




1 0 0

0 cos(2a1h) − sin(2a1h)θM 1

0 sin(2a1h)θM 1 cos(2a1h)


 θS, (16)if there were no measurements performed. 7



2.3 Von Neumann measurementsIn quantum mehanis measurements have a probabilisti nature. The subjet ofmeasurements are self-adjoint n × n matries, so alled observables. Let the spetraldeomposition of an observable χ be the following:
χ =

∑

i

λiPi. (17)Where λi are the di�erent eigenvalues of χ, and Pi are the orresponding eigenprojetions.The possible outomes of the measurement are the di�erent λi eigenvalues and theorresponding probability is
Prob(λi) = Tr(ρPi). (18)A key element of quantum measurements is that it will hange the atual state of thequantum system to

ρi =
PiρPi

TrPiρPi

, (19)if the outome of measurement is λi.Example 2 Measurement of the Pauli operator σ1:If one onsiders the measurement of the observable σ1, then the possible outomesare the di�erent eigenvalues of the observable, i.e. ±1. The probabilities of the di�erentoutomes are
Prob(+1) = TrρE+1 = 1

2
(1 + θ1)

Prob(−1) = TrρE−1 = 1
2
(1 − θ1)respetively, where the spetral deomposition of σ1 is

σ1 = E+1 − E−1 =
1

2

[
1 1

1 1

]
− 1

2

[
1 −1

−1 1

]
,The state after measurement an be

θ+1 =
[

+1, 0, 0
]T

, θ−1 =
[
−1, 0, 0

]T
.depending on the atual outome.2.4 Literature reviewThe state estimation methods developed for qubits in the literature are brie�y de-sribed in this setion. 8



2.4.1 Standard methodWe start with the most important method, the standard method [18℄, beause we willmake omparison with the standard method in all other ases.Three di�erent kinds of measurements are performed, they are represented by thethree Pauli matries σ1, σ2, σ3. Sine all the three are unitary their eigenvalues (whihare the possible values of the measurement) are ±1. If we measure σi on the state
ρ(θ) =

1

2

[
1 + θ3 θ1 − iθ2

θ1 + iθ2 1 − θ3

]then the probability of outome +1 is
Prob(+1i) =

1 + θi

2
.similarly to Example 2. From the physial point of view, σ1, σ2 és σ3 mean the spinmeasurement in diretions x, y and z, respetively.Beause of the high symmetry and the independeny of omponents we an easilymake an estimation sheme for the state θ. Suppose, that m measurements are performedin eah three diretions. Then the relative frequeny νi of the outomes +1 is a su�ientstatisti, so it is enough to use:

νi :=
mi

m
, where i = 1, 2, 3, and mi is the number of (+1)-s in the diretion of i.The least squares estimator is a widely known and used method whih minimizes thesquared error. If the relative frequenies resulting from the measurements are νi, thenthe deviation from the real value of the state an be written in the form (beause of theindependent measurements, there are no ross terms):

ϕm
LS(ν, θ) =

∑

i=1,2,3

(
νi −

1 + θi

2

)2We are going to minimize this expression. It is trivially minimal, when the expressionsin parenthesis are zeros. This way, knowing relative frequenies νi, an estimate an begiven for the Bloh vetor θ:
Φm(ν) =




2ν1 − 1

2ν2 − 1

2ν3 − 1




(20)
9



Note that this estimation an provide physially meaningless result (the state will beoutside of the Bloh ball), but the probability of having false estimate asymptotiallyvanishes as the number of measurement inreases.The ovariane matrix (V standard) of this estimator is the following:
V standard =

1

m




1 − θ2
1 0 0

0 1 − θ2
2 0

0 0 1 − θ2
3


 (21)Beause two matries are usually not omparable, we will examine the traes of o-variane matries. If we have the opportunity to measure only N times, then m = N

3
,and the trae of the ovariane matrix will be the following:

Tr V standard
N (θ) =

9 − 3‖θ‖2
2

N
. (22)2.4.2 Minimal qubit tomographyRehaek, Englert and Kaszlikowski has notied in 2004, that in the standard methodthere is altogether 6 measurement diretions, but in the 3 dimensional ase it is enough tomeasure in only 4 diretions to get all the possible states [20℄. So they did not measure inthe diretion of the axis of the Bloh ball, but the projetions were related to the vertiesof a regular tetrahedron, and they applied the maximum likelihood priniple to get anestimation for θ.It is possible to alulate the ovariane matrix of the estimator, but this is notomparable with the ovariane matrix of the standard method in most of the ases, butif we ompare the trae, then we get that the standard method is more e�ient if θ 6= 0[18℄.After all this oneption is not useless, beause they suggested an adaptive proess,too, whih rotates the measurement diretions so that a possible outome beomes onthe opposite side of the assumed θ. This way they ahieved that in that diretion theynever or only a few times get an outome, so they obtained a better result for pure statesthan if they used standard method.2.4.3 Indiret (weak) measurementsIt is intuitively lear, that one must make a ompromise between the informationgained in a measurement and the disturbane or demolition aused by it. The generalimpossibility of determining the state of a single quantum system is proved in [3℄ whatever10



measurement sheme is used. This indiates that the e�ieny or preision provided byan indiret measurement sheme is neessarily smaller than that of a sheme that usesvon Neumann measurements.A related problem to the state estimation is to prepare the state of a given system ina spei�ed way. Most papers apply some kind speial dediated measurements either todrive the system into a desired state or to ompensate for the 'measurement bak-ation'.An appliation of weak measurements in bipartite state puri�ation an be seen in [8℄ ,where the authors also use ontinuous time dynamis. Korotkov and Jordan [13℄ haveshown that "it is possible to fully restore any unknown, pre-measured state, though withprobability less than unity." A similar method will used in our approah, but we willimprove a disrete-time model and make a state estimation from the measurements, too.
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3 Optimization of the standard methodThis hapter is devoted to a family of a methods that attempt to improve the standardmethod by varying the number of measurements in di�erent diretions and by hangingthe diretions themselves.3.1 Determination of optimal measurement diretions and ratiosFirst we observe, that we measure in eah diretion the same number using the stan-dard method independently of the state of the system. A possible way to improve themeasurement sheme is that we optimize the number of measurements in ertain dire-tions suh that the total variane (trae of the ovariane matrix) will be minimal.Assume we are allowed to measure on only N identially prepared opy of the systemusing the standard observable formed by the Pauli matries and measure in the appro-priate diretions n1, n2 and n3 times (N = n1 + n2 + n3). Then similarly to the standardmethod the measurements in a ertain diretion only depend on the appropriate θi. Butthe measurements are still independent in eah diretion and the estimator will be thesame as (20):
Φn1,n2,n3(ν) =




2ν1 − 1

2ν2 − 1

2ν3 − 1




. (23)The di�erene that here:
νi :=

mi

ni

, where i = 1, 2, 3, and mi is the number of (+1)-s in the diretion of i.Theorem 1 The total variane is minimal if
n1 : n2 : n3 =

√
1 − θ2

1 :
√

1 − θ2
2 :
√

1 − θ2
3 (24)Proof: Similarly to (22) the ovariane matrix will be:

Vn1,n2,n3
(θ) =




1−θ2
1

n1
0 0

0
1−θ2

2

n2
0

0 0
1−θ2

3

n3




12



Our aim is to minimize the trae of Vn1,n2,n3
(θ) for all possible n1, n2, n3 (while forthe standard measurement sheme n1 = n2 = n3 = n). This is a simple optimizationtask:

1 − θ2
1

n1
+

1 − θ2
2

n2
+

1 − θ2
3

n3
→ min,subjet to: n1 + n2 + n3 = N .We an solve the above optimization problem using a Lagrange-funtion:

L(n1, n2, n3, λ) =
1 − θ2

1

n1
+

1 − θ2
2

n2
+

1 − θ2
3

n3
+ λ · (n1 + n2 + n3 − m)From the neessary onditions for the minimum in eah diretion we obtain:

λ =
1 − θ2

1

n2
1

=
1 − θ2

2

n2
2

=
1 − θ2

3

n2
3

�Corollary 1 The minimal trae of ovariane matrix is:
TrV minimal

N (θ) =
1

N

(√
1 − θ2

1 +
√

1 − θ2
2 +

√
1 − θ2

3

)2 (25)We an ompare it with the trae for the standard method (22) by using the e�ienyfator:
η(θ) =

TrV n
minimal(θ)

TrV n
standard(θ)

=

(√
1 − θ2

1 +
√

1 − θ2
2 +

√
1 − θ2

3

)2

9 − 3 (θ2
1 + θ2

2 + θ2
3)We an easily get that 0 ≤ η(θ) ≤ 1, η(θ) = 1 if and only if θ1 = θ2 = θ3, when theminimal and standard shemes oinide, and the smaller is the value of η, the e�ient isthe estimation.We examine 2 important examples:Example 3 If the state is in the x-axis diretion, i.e. θ = (x, 0, 0) then the e�ieny is

η(x, 0, 0) =

(√
1 − x2 + 2

)2

9 − 3x2
(26)The value of the e�ieny in x = 0 is η(0, 0, 0) = 1, and as the state gets loser to thesurfae the e�ieny fator dereases monotonously (i.e. η′(x, 0, 0) < 0, if x > 0, and

η′(x, 0, 0) > 0, if x < 0). The value on the surfae is η(1, 0, 0) = 2
3
. So as the true stateapproahes the surfae, the minimal sheme beomes better and better (see Figure 1).13
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Figure 1: E�ieny along the axis (x, 0, 0)Example 4 Consider the ase when the state is on the surfae, θ2
1 + θ2

2 + θ2
3 = 1In this ase we an observe a highly asymmetri pattern (see Figure 2): the measure-ment sheme is the most e�etive if the true state is near the diretion of one axis.

Figure 2: E�ieny on the surfae14



Theorem 2 The minimal sheme is the most e�etive on the Bloh sphere (‖θ‖2 = r)in the axis diretions.Proof: Beause TrV n
standard(θ) = (9 − 3r2) · 1

n
, so the variane of standard method isonstant on the whole sphere. Therefore it is enough to minimize (25):

TrV n
minimal(θ) =

1

n

(√
1 − θ2

1 +
√

1 − θ2
2 +

√
1 − θ2

3

)2

,subjet to θ2
1 + θ2

2 + θ2
3 = r2.The above minimization problem an be solved by using spherial oordinates andusing riteria for partial derivatives, but beause of symmetry it is simpler with theLagrange-method. Notie, that (25) is minimal if √1 − θ2

1 +
√

1 − θ2
2 +

√
1 − θ2

3 is min-imal, so the orresponding Lagrange funtion is
L(θ1, θ2, θ3, λ) =

√
1 − θ2

1 +
√

1 − θ2
2 +

√
1 − θ2

3 + λ ·
(
θ2
1 + θ2

2 + θ2
3 − r2

)Its partial derivatives are equal to zero at the minima, so
2λθi −

θi√
1 − θ2

i

= 0, i = 1, 2, 3There are two di�erent types of solutions to the above equations: θi = 0, or θ2
i ={onstantdepending on λ}. So we get 3 di�erent solutions from the derivative riteria

θ1 = θ2 = 0 and θ2
3 = r2 (27)

θ1 = 0 and θ2
2 = θ2

3 =
r2

2
(28)

θ2
1 = θ2

2 = θ2
3 =

r2

3
(29)If we examine these ases, we obtain that at (27) there are minimum plaes, at (28) thereare saddles, and at (29) there are maximum plaes. �Theorem 3 With the optimal hoie of the diretions and the number of measurementsthe variane of estimator an derease to

TrV n
optimal(θ) =

1

n

(
2 +

√
1 − r2

)2

. (30)Proof: The statement is the onsequene of Theorem 2 if we use suh a oordinatesystem, that one of the axes is in the diretion of θ. Then the state will be [r, 0, 0] in thenew oordinate system, so using (25) we get (30). �Remark: The optimal ase is equivalent to Example 3. The improvement from theabove modi�ation an be seen on Figure 1 and the e�ieny grows up to 2
3
, if the stateis on the surfae. 15



3.2 Adaptive algorithmIn the realisti ase we have an unknown θ, so the optimal measurement diretionsand measurement ratios are unknown, too. Still the following statement is true:Theorem 4 The optimal variane (30) from Theorem 3 is ahievable asymptotially.Proof: We will give a measurement strategy for all N so that if N goes to in�nity thelimit of the total variane will be (30).We need to make at least a draft, "orientation" estimate of the variane that an befollowed by a re�ning step that applies the optimal measurement number ratios. Aord-ing to Theorem 2, we an ahieve the best result if one of the measurement diretionspoints to the diretion of the true Bloh vetor. Therefore, if one rotates the measurementdiretions after the initialization step driven by the draft estimate θ̃, then the �nal estima-tion step an be performed by using the new diretions and performing the measurementswith the optimal ratio.With the above strategy we an easily get an asymptotially optimal algorithm. Letbe the length of initialization step Ninit. Then a su�ient ondition is Ninit → ∞ and
Ninit

N
→ 0 (for example by hoosing Ninit =

√
N). Then θ̃ will onverge to θ, and ourestimation will be optimal with the number of measurements N−Ninit. Sine the varianeis a ontinuous funtion of the measurement diretion and ratios and Ninit

N
→ 0 so thevariane goes to (30).There is only one problem with this sheme. Namely it an happen that our estimationof θ may fall outside of the Bloh ball, so ‖θ̃‖2 > 1. In this ase r > 1, so aordingto Theorem 1, the optimal ratio will ontain non-real numbers whih is obviously notpossible. If our state is mixed (‖θ‖2 < 1) then this problem does not arise, beause theprobability that θ̃ fall outside of a irle with radius ε and enter θ goes to zero aordingto the weak law of large numbers. So if ε is small enough then the probability of fallingoutside the Bloh ball (‖θ̃‖2 > 1) goes to 0, too.If the state is pure (‖θ‖2 = 1), then the probability of falling outside the Bloh ball(‖θ̃‖2 > 1) does not go to zero. So we apply the following modi�ation to the abovealgorithm: We know that the estimator θ̃ is inside of the irle with radius ε(N) andenter θ with 1 − δ(N) probability. So if we use a translation by ε(N) on the estimator

θ̃ in the diretion of the enter of the Bloh ball, then this estimator (θ̂) will be inside ofthe Bloh ball at least with 1− δ(N) probability. If ε(N) is onstant then δ(N) goes to 0aording to the weak law of large numbers. It is then possible with a little hange that
ε(N) goes to zero while δ(N) goes to 0, too. In this ase we get an estimator (θ̂) that is16



inside of the Bloh ball with asymptotially 1 probability, and the estimator θ̂ goes to θ(beause ε(N) → 0). So beause of the ontinuity this estimation will be asymptotiallyoptimal. �Let us ompare this result with the standard method (22). Unfortunately we an notompare the above result with the minimal qubit tomography beause the authors didnot present any analytial result for the variane, only numerial ones for speial θ-s. Theomparison an be seen in Figure 3.
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Figure 3: Comparison of di�erent methodsOur estimation sheme is better than the standard one everywhere. Furthermore,when we are loser to the surfae the estimation is more e�ient. That is beause thealgorithm uses the asymmetry in the number of measurements and near the surfae theasymmetry is greater.3.3 Numerial approahes for �nite number of measurementsAn almost surely asymptotially optimal measurement sheme was introdued in The-orem 4, but in reality there is always a �nite number of measurements available. So this17



setion ontains the investigation of how the �nite ase hanges the theoretial results.In �nite ase we loose e�ieny beause the length of the initialization part is notnegligible. Therefore, an important question is how to selet the length Ninit. Anotherruial part of the algorithm desribed in Theorem 4 is that in �nite ase the draftestimation goes outside of the Bloh ball with positive probability, whih needs to behandled. Here I give some possible algorithms to threat these problems.In �nite ase the alulations of variane are really ompliated so I investigate theases by simulations in MATLAB [15℄ to approximate the real variane of di�erent esti-mation shemes and ompare it with the theoretial result (30). During the simulationsthe whole estimation proess was performed 10000 times and the mean square error wasomputed. The simulations ontain 3 di�erent ases of the total number of measurements:
N = 1000, 3000, and 5000. These numbers ome from the bound of omputational a-paity.In order to investigate the behavior of the algorithm on di�erent real states, we per-form simulations on 3 di�erent states:

• θ = [0.95, 0, 0]: a mixed state in the axis diretion
• θ = [0.8, 0.5, 0.1]: a mixed state in a general diretion
• θ = [ 1√

3
, 1√

3
, 1√

3
]: a pure state in a general diretionIn all ases ‖θ‖2 is hosen to be big beause then the di�erene from the standardmethod will be signi�ant. The results of the simulations are interpreted in tables withthe same struture. In the �rst row the variane of standard method omputed from (22)an be found. This is followed by the mean square errors obtained from the simulations.Finally the theoretial results from Theorem 4 are presented, omputed from (30).3.3.1 Using optimal ratios without rotationThe steps of the algorithm inlude an initialization giving a draft estimate using thestandard sheme (m = Ninit

3
), that is followed by a �nal estimate.In the initialization step a pre-de�ned funtion of the total allowable measurementnumber N is used: Ninit = Nα. If 0 < α < 1 then Ninit ful�lls the onditions disussed inTheorem 4. In our simulation experiments the values α = 0.75 and α = 0.9 are applied.The optimal ratio of the measurement numbers n1, n2 and n3 (where n1 + n2 + n3 = N)was alulated from Theorem 1. In the �nal estimation step we measure in eah diretion

ni − m times, i.e. we take the number of measurements of the initialization phase alsointo aount. 18



In addition, there is a trade-o� between the length of the initialization step deter-mining the variane of the draft estimate θ̃ and that of the �nal estimation step. If theinitialization step is too short, then the draft estimation will be impreise, so the optimalratio will be far from n1, n2, n3. On the other hand if the initialization step is too longthen we an easily �over-measure� in some diretion, i.e ni < m = Ninit

3
, so we an notuse the optimal ratios in the orreting step beause we must measure ni−m times morein eah diretion, and in this ase it is a negative number.

[0.95, 0, 0] N=1000 N=3000 N=5000standard 0.00629 0.00210 0.00126
α = 0.75 0.00553 0.00186 0.00109
α = 0.9 0.00527 0.00179 0.00106optimal 0.00535 0.00178 0.00107

[0.8, 0.5, 0.1] N=1000 N=3000 N=5000standard 0.0063 0.0021 0.00126
α = 0.75 0.00636 0.00202 0.00124
α = 0.9 0.00620 0.00202 0.00122optimal 0.00536 0.00179 0.00107

[ 1√
3
, 1√

3
, 1√

3
] N=1000 N=3000 N=5000standard 0.006 0.002 0.0012

α = 0.75 0.00616 0.00203 0.00121
α = 0.9 0.00600 0.00201 0.00119optimal 0.004 0.00133 0.0008Table 1: Simulation results using optimal ratios without rotationThe results of simulation an be seen in Table 1. Our �rst observation is that thee�ieny does not depend well on the length on initialization step, i.e from α. But weget a bit better results for the α = 0.9 ase. Aording to Theorem 2, if θ = [0.95, 0, 0]then the variane is lose to the optimal, but in the θ = [0.8, 0.5, 0.1] and θ = [ 1√

3
, 1√

3
, 1√

3
]ases the results are far from the optimal result beause then the real state is not loseto an axis. In the last ase when θ1 = θ2 = θ3 the variane of our method will be equalto the standard ase.3.3.2 Using rotation with simpli�ationFrom Theorem 2 we know that if we want results to be lose to the optimal variane(30), then we need to rotate the axis of measurements. In reality this an be done byrotating some mirrors (as in [20℄) or using a Hamiltonian to rotate the state. The pointis that this an add some extra time to the measurement proess, but if N is big this willbe irrelevant. 19



I will use the measurement sheme desribed in Theorem 4. The length of initializationstep will be Ninit = Nα with α = 2
3
and α = 3

4
. Then I rotate a measurement diretionin the diretion of draft estimate θ̃. Then the optimal ratio (24) will hange to

ñ1 : ñ2 : ñ3 =

√
1 −

(
θ̃2
1 + θ̃2

2 + θ̃2
3

)
: 1 : 1, (31)beause in the new oordinate system the state of system is approximately (‖θ̃‖2, 0, 0). Ifthe draft estimation is outside of the Bloh ball(‖θ̃‖2 > 1), then in (31) will be a nonreal(i.e. a omplex) number. Let us use notation ϕ(θ̃) for the non-trivial element of ratio.The simplest way is to handle the problem ‖θ̃‖2 > 1, that in this omplex ase we usea onstant ratio, i.e. ϕ(θ̃) = c. In our simulations we use c = 0.3 and c = 0.1. Thenwe measure another N −Ninit times and get a new estimate θ̂ for the state of the qubit.To avoid the loss of information from initialization step and get an unbiased estimate wewill use the Ninit

N
· θ̃ + N−Ninit

N
· θ̂ estimator during simulations.

[0.95, 0, 0] N=1000 N=3000 N=5000standard 0.00629 0.00210 0.00126
α=3

4 ,c=0.1 0.00593 0.00189 0.00112
α=2

3 ,c=0.1 0.00611 0.00205 0.00117
α=3

4 ,c=0.3 0.00552 0.00186 0.00111
α=2

3 ,c=0.3 0.00568 0.00188 0.00112optimal 0.00535 0.00178 0.00107
[0.8, 0.5, 0.1] N=1000 N=3000 N=5000standard 0.0063 0.0021 0.00126
α=3

4 ,c=0.1 0.00588 0.00205 0.00125
α=2

3 ,c=0.1 0.00600 0.00199 0.00120
α=3

4 ,c=0.3 0.00557 0.00193 0.00116
α=2

3 ,c=0.3 0.00559 0.00186 0.00114optimal 0.00536 0.00179 0.00107
[ 1√

3
, 1√

3
, 1√

3
] N=1000 N=3000 N=5000standard 0.006 0.002 0.0012

α=3
4 ,c=0.1 0.00487 0.00157 0.000935

α=2
3 ,c=0.1 0.00473 0.00155 0.000930

α=3
4 ,c=0.3 0.00494 0.00162 0.000987

α=2
3 ,c=0.3 0.00494 0.00162 0.000964optimal 0.004 0.00133 0.0008Table 2: Simulation results using rotation with simpli�ationFrom the simulation results (see Table 2) we an �nd that this ase is not sensitiveto α, too. In ase θ = [0.95, 0, 0] and θ = [0.8, 0.5, 0.1] the c = 0.3 is more e�ient, butin ase θ = [ 1√

3
, 1√

3
, 1√

3
], the c = 0.1 value will have better variane. This orresponds tothe simple fat that the value of ϕ(θ) is loser to 0.3 in the �rst two ases, while in last20



ase ϕ(θ) is loser to 0.1. In all three ases the optimal variane is well approximatedbut these varianes attahed to di�erent parameters in di�erent ases.3.3.3 Using rotation with numerial Bayes estimationFrom the previous part it is lear that for di�erent θ values di�erent ϕ(θ) values areoptimal, so to obtain a better estimate we need to make an estimation from θ̃ to θ evenif ‖θ̃‖ > 1. We will use the numerial Bayes estimation to this purpose . We alulatethe probabilities to some element of a Cartesian grid in suh a way that the total numberof the elements will be onstant, so this alulation requires onstant time even for huge
N values, thus it will be negligible. We only take into aount the elements of the gridthat are inside of the Bloh ball so in this way we get an estimator θ̃∗ whih is alwaysinside of the Bloh ball. In simulation we use ϕ(θ̃) = ν ·

√
1 −

(
(θ̃∗1)

2 + (θ̃∗2)
2 + (θ̃∗3)

2
),with ν = 1

2
and ν = 1

4
. The other details of the measurement sheme is the same as inthe previous sheme.

[0.95, 0, 0] N=1000 N=3000 N=5000standard 0.00629 0.00210 0.00126
α=2

3 , ν=1
2 0.00571 0.00190 0.00112

α=2
3 , ν=1

4 0.00610 0.00204 0.00120
α=3

4 , ν=1
2 0.00566 0.00187 0.00113

α=3
4 , ν=1

4 0.00590 0.00194 0.00116optimal 0.00535 0.00178 0.00107
[0.8, 0.5, 0.1] N=1000 N=3000 N=5000standard 0.0063 0.0021 0.00126
α=2

3 , ν=1
2 0.00557 0.00189 0.00114

α=2
3 , ν=1

4 0.00593 0.00204 0.00123
α=3

4 , ν=1
2 0.00552 0.00196 0.00120

α=3
4 , ν=1

4 0.00577 0.00210 0.00131optimal 0.00536 0.00179 0.00107
[ 1√

3
, 1√

3
, 1√

3
] N=1000 N=3000 N=5000standard 0.006 0.002 0.0012

α=2
3 , ν=1

2 0.00484 0.00158 0.000936
α=2

3 , ν=1
4 0.00476 0.00155 0.000928

α=3
4 , ν=1

2 0.00485 0.00158 0.000946
α=3

4 , ν=1
4 0.00475 0.00159 0.000931optimal 0.004 0.00133 0.0008Table 3: Simulation results using rotation with numerial Bayes estimationThe data of Table 3 show that the situation did not hange too muh. The lengthof the initialization does not a�et well the e�ieny, while for the θ = [0.95, 0, 0] and

θ = [0.8, 0.5, 0.1] ases the bigger ν is more e�ient, but in ase of θ = [ 1√
3
, 1√

3
, 1√

3
]21



the smaller ν will lead us to better result. However the di�erenes have been reduedompared to the previous algorithm.3.3.4 Comparison of di�erent algorithmsInstead of omparing the 10 di�erent measurement shemes (see the rows of Table1-3) let us hoose the most e�ient ones.In ase of no rotation the α = 0.9 ase is the most e�ient. Similarly, if we regard thease with rotation using numerial Bayes estimation we an state that the ν = 0.5 asehas better varianes, let us hoose α = 2
3
(so the �rst data row of Table 3). Finally, inthe ase with rotation using simpli�ation there are 2 nearly optimal but fundamentallydi�erent ases with c = 0.3 and c = 0.1. Let us hoose in both ases α = 2

3
(so the seondand fourth data row of Table 2). And �nally we will plot the optimal variane (30).To get omparable results for di�erent θ and N values we do not plot the varianesof eah ases but the e�ienies, i.e we normalize the values with the variane of thestandard method.

1000 3000 5000 1000 3000 5000 1000 3000 5000
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Number of measurements

E
ffi

ci
en

cy

Summary of the simulation results

Without rotation
With simple rotation − c=0.1
With simple rotation − c=0.3
With rotation using Bayes method
Optimal value

[0.95,0,0] [0.8,0.5,0.1] [0.577,0.577,0.577] 
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The results an be seen in Figure 4. The e�ieny of the method without rotationdoes not depend on the purity (from ‖θ‖2), but on the distane from the axis. If thereal state is in the diretion of an axis (θ = [0.95, 0, 0]), then the ahieved variane is thesmallest, in other ases it is bigger. If we use rotation then the key determining fatoris the purity of the state. In the �rst two ases the value of ‖θ‖2 is roughly the samejust their diretion are di�erent, and indeed all three rotating measurement sheme hassimilar e�ieny even by di�erent values of θ. In the ase of simpli�ation there is areognizable di�erene between the light and dark blue marks. The numerial Bayesianapproah is a kind of ompromising result, near the minimum of blue lines. Probablywith a better hoie of ϕ(θ̃) the variane an show further improvement but this is outsideof the sope of this thesis.The fat is visible too, that the estimation of pure state is more ompliated thanestimation of a mixed state sine there is bigger gap between the simulation and theoret-ial results. Note that all of these methods are more e�ient than the standard one. Allof the methods begin with an initialization part so they an be ombined to use of theiradvantage, for example if we get that θ̃ is lose to an axis then we do not use rotationet.
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4 Indiret measurement sheme using oupled qubitsIndiret measurement means that the projetive measurements are performed on theprobe system (being in state θM) attahed to the one we are interested in (θS). In theomposite system (in state ρS+M) an indiret measurement orresponds to the observablesof the form I ⊗ AM , where AM is a self adjoint operator on the Hilbert spae of system
M . For the sake of simpliity, it is assumed, that AM is a Pauli spin operator. The

Development:
h

θS(0)
Coupling:
ax,ay,azθM

Measurement:
Ι⊗σ� θS(k+1)

±1Figure 5: Signal �ow diagram of indiret measurementmeasurement strategy is shown in Fig. 5. At eah time instant of the disrete time set,the measurement qubit is oupled to the unknown system S. They evolve aording tothe bipartite dynamis (13) for the sampling time h, and at the end of the samplinginterval, a von Neumann measurement is performed on the measurement qubit. At thenext time instant, the previous steps are repeated.The above setting of the indiret measurement allows us to adjust various parametersof the measurement strategy. These an be and will be used to make an optimal ompro-mise between the information gained from the measurement and the demolition ausedby the measurement bak-ation.The oupling parameters a1, a2, a3 of the Cartan deomposition (11-12) determine how(in terms of strength and diretion) the measurement system is oupled to the unknownone. The sampling time h ampli�es this e�et and appears as a multipliative fator tothe oupling parameters.The state of the measurement qubit (θM ) an be di�erent at eah time instant whihallows us in the future to introdue a feedbak to the measurement protool.It is important to note that one an make a 'no information - no demolition' situationby setting the oupling parameters to zero, and a 'maximal information - omplete de-molition' situation, too. Examples of suh extreme ases will be given in the subsetion4.1.2 and 4.2.2.
24



4.1 A simple example for indiret measurementA simple speial ase of an indiret measurement is investigated analytially hereto brighten the e�et of the protool parameters. As we shall see later, this ase anbe used to seletively estimate one of the omponents of the unknown qubit's Blohvetor, similarly to the so alled standard measurement sheme [18℄ for single qubits. Astraightforward modi�ation of the measurement setup leads to the estimators of theother two Bloh vetor omponents.4.1.1 Measurement setupSuppose in the sequel that the qubits are interating only in the y diretion for time h(sampling time). Afterwards, an indiret measurement is performed, i.e. a von Neumannmeasurement of the observable I ⊗ σx on the omposite system with state
e−ih(a2σS

2 ⊗σM
2 ) · (ρS ⊗ ρM) · e−ih(a2σS

2 ⊗σM
2 )∗,For the sake of simpliity, hoose h and a2 in suh a way, that 2a2h = 2π. The abovesetting orresponds to the parameters

h =
1

10
, a2 =

5

2
π, a1 = a3 = 0.The probabilities of the di�erent outomes of I ⊗ σx's measurement are

Prob(+1) = 1
2
(1 + θS2θM 3)

Prob(−1) = 1
2
(1 − θS2θM 3).

(32)Now the probabilities depend on both the state of the unknown θS and that of themeasurement qubit θM . The post-measurement states are
θ+1

S =




θS3θM2+θS1θM1

1+θS2θM3

θS2+θM3

1+θS2θM3

θS3θM1−θS1θM2

1+θS2θM3




, θ−1
S =




θS3θM2−θS1θM1

1−θS2θM3

θS2−θM3

1−θS2θM3

−θS3θM1−θS1θM 2

1−θS2θM3




(33)
if +1 or −1 was the result, respetively. This measurement setup is useful for unknownstate estimation sine the probabilities and the new states depend on both θS and θM .This means, that we both gain information from the measurements and retrieve informa-tion in the new states after the measurement.25



4.1.2 Properties of repeated indiret measurementsLet us onentrate on the estimate of the seond unknown state o-ordinate, i.e. wewant to desribe the hange of θS2 (notation: x = θS2) during the measurements. Let usfurther assume that θM3 is onstant (denoted by c) and θM1 = θM2 = 0, i.e. θM = [0, 0, c]T .If c = 1 then we get the standard measurement sheme, where
Prob(±1) =

1

2
(1 ± x) , x±1 = ±1It is easy to see from (33) that this would be a totally invasive measurement, i.e. theinformation about the true state would be lost, thus we assume |c| < 1.Propostion 1 If we measure �rst +1, and thereafter -1 (or vie versa), then the stateof θS2 (=x) will not hange.Proof : After the �rst measurement, x hanges to x+1 = x+c

1+cx
then from x+1 it turns tobe x+1,−1 = x+1−c

1−cx+1 =
x+c
1+cx

−c

1−c x+c
1+cx

= · · · = x. The reverse goes similarly.Corollary 2 All of the possible ases of states an be ordered in a line suh a way, thatafter eah measurement we jump in the neighboring state on the left or right side.Propostion 2 If we measure �rst +1, and thereafter -1 (or vie versa), then the proba-bility of these outomes doesn't depend on x.Proof : First from x it will be x+1 = x+c
1+cx

with probability: P = 1
2
(1 + cx) then from

x+1 it will be x with probability: Q = 1
2
(1 − cx+1) = 1

2
(1 − c x+c

1+cx
) = 1

2
1−c2

1+cx
. So theprobability of this outome is P · Q = 1−c2

4
. The reverse goes similarly.Corollary 3 If two outome sequenes ontain the same number of +1 and −1 measure-ment outomes, then their probabilities are the same.Corollary 4 The probability that there are k times +1 and l times −1 outomes (k > l)in the sequene an be omputed as:

(
1 − c2

4

)l

· pk−land the state after this sequene of outomes will be xk−l, where pn is the probabilityof that from n measurements all outomes are +1s, and xn is the resulting state from
n measurement when all outomes are +1s. So we an represent the sequene of themeasurement outomes as a Markov-proess.26



Propostion 3 pk is a linear funtion of x.Proof : The proof goes by indution. Let pk := qk

2k and xk := yk

qk
, where (we will prove)

qk and yk are simple polynomials of c and x.If k = 0 then q0 = p0 = 1 and y0 = x.Next let us suppose that both qk and yk are simple polynomials, and pk is linear in x.Then
pk+1 = pk ·

1

2
(1 + cxk) =

qk

2k
· 1

2

(
1 + c

yk

qk

)
=

1

2k+1
· (qk + cyk).On the other hand pk+1 =

qk+1

2k+1 , so
qk+1 = qk + cyk. (34)Furthermore,

xk+1 =
xk + c

1 + cxk

=

yk

qk
+ c

1 + cyk

qk

=
yk + cqk

qk + cyk

=
yk + cqk

qk+1
.On the other hand xk+1 =

yk+1

qk+1
, therefore

yk+1 = yk + cqk. (35)Finally we onlude that qk and yk are really simple polynomials, and from the reursionit an be seen that both qk and yk are linear in x, so pk is linear in x, too.The proof gives us a reursive alulation for xk and pk, so it is possible to build upa stohasti model based on the above 3 propositions, and develop a state estimationstrategy.4.2 Towards optimal quantum state estimation by indiret mea-surementsLet us suppose that we have N idential opies of the omposite quantum system (thetwo oupled qubits, S and M). We shall use the following measurement strategy:1. Perform 2 subsequent measurements (a measurement pair) on eah opy with apre-spei�ed c = θM3 and ompute the maximum-likelihood (ML) estimate of x.2. Retain the opies on whih the measured outomes were +1 and −1 (in any order)for further studies, beause they are not a�eted by the measurements, i.e. their
θS2 = x is left unhanged (see Proposition 1).27



Note that the above implies n = 2 for the results in sub-setion 4.1.2. Now we investigatehow the seletion of c (the initial state of the measurement system) a�ets the varianeof the estimate (we want it to be small), and the ratio of the un-a�eted system opies(we want this to be large).Denote the number of the (+1, +1) outomes by N+, and the probability that ameasurement pair result in this outome by p+ = p2 = 1+c2+2cx
4

. Similarly, the numberof the (−1,−1) outome is denoted by N−, and its probability is by p− = 1+c2−2cx
4

. Thenthe number of the non-e�etive ((+1,−1) or (−1, +1)) outomes is N0 = N −N+ −N−,and its probability is p0 = 1−c2

2
. Then the likelihood funtion of N measurement pairs isthe following polynomial distribution:

P =
N !

N+! N−! N0!
p

N+

+ p
N−

− pN0

0 (36)The maximum likelihood estimate of x is obtained by taking the logarithm of P in (36),and maximizing it with respet to x:
x̂ML(N+, N−, c) =

1 + c2

2c

N+ − N−

N+ + N−
(37)This estimate is well-de�ned if at least one of N+ or N− is positive, that holds withprobability one when number of measurements goes to in�nity. On the other hand, thisestimate is asymptotially unbiased.4.2.1 The variane and the non-demolition probabilityIn the ase of the investigated measurement setup (see setion 4.1.1), the variane

VN of the Maximum Likelihood estimator (37) is as follows:
VN(c, x) =

N∑
i=1

V ar
(

1+c2

2c

N+−N−

N++N−

| N+ + N− = i
)
· Prob(N+ + N− = i) =

=
N∑

i=1

(
1+c2

2c

)2
1
i2

V ar (N+ − N− | N+ + N− = i) · Prob(N+ + N− = i)(38)where V ar(.) denotes the variane of a random variable.Let be Xj a random variable that takes the value +1 if the outome of the mea-surement pair is (+1, +1), and −1 when the outome is (−1,−1). Then Xj = 1 withprobability p+

p++p−
, and Xj = −1 with probability p−

p++p−
. These are the onditional prop-erties of being +1,+1 and −1,−1, if we know that the two outome is the same. Then

V ar (N+ − N− | N+ + N− = i) = V ar

(
i∑

j=1

Xj

)
= i · V ar(X1).28



From simple alulation we obtain:
V ar(X1) = 1 −

(
p+ − p−
p+ + p−

)2

= 1 −
(

2cx

1 + c2

)2Therefore, the variane of the Maximum Likelihood estimator is
VN(c, x) =

(
1 + c2

2c

)2
[
1 −

(
2cx

1 + c2

)2
]

N∑

i=1

1

i
· Prob(N+ + N− = i),and N∑

i=1

1

i
· Prob(N+ + N− = i) = E

(
1

N+ + N−

)
∼ 1

N(p+ + p−)
,where E denotes the mean value, and ∼ stands for asymptoti equality. Thus we obtain:

lim
N→∞

NVN (c, x) =
(c + 1/c)2 − 4x2

2(1 + c2)
= W (c, x)The other important aim would be to minimize the disturbed system instanes, i.e. theases when the outomes are (+1, +1), or (−1,−1). The probability of having suhoutomes is p(c, x) = 1

2
(1 + c2). Note that W (c, x) an be regarded as the asymptotivariane originating from a qubit, and p(c, x) as the probability that the state of qubitwill remain unhanged during the estimation proess.4.2.2 Optimal measurement strategyIf one wants to have a ompromising strategy, then a possible way is to minimize theexpression

Ψ(c, x) = min
c

[ A · W (c, x) + (1 − A) · p(c, x) ] , (39)where A ∈ R
+ is a normalized parameter (1 ≥ A ≥ 0) whih determines our trade-o�strategy. If A ≈ 1, then the aim is auray, while in the ase of A ≈ 0 we aim at minimaldemolition.Figure 6 shows the substantial part of the loss funtion Ψ(c, x) over the domain

(−1 ≤ x ≤ 1), (0.2 ≤ c ≤ 1). Note that the funtion is symmetri to the c = 0 line, butit is inde�nite at c = 0. It is seen that there is a de�nite optimal value c ≈ 0.6 for theinitial state of the measurement qubit in ase A = 0.1 that is the same for every x. In thease of A = 0.9, however, the minimum is taken at c = 1, i.e. at the omplete demolitionsituation.
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c Figure 6: The optimal measurement qubit state for di�erent A values: more information(A = 0.9, left) versus more non-demolished system (A = 0.1, right)4.2.3 Comparison with the standard methodIt is possible to ompare the above estimation sheme with the so-alled standardqubit tomography desribed in subsetion 2.4.1, whih uses information obtained fromthe von Neumann measurements of the three Pauli matries.For the sake of reasonability, it is assumed that the number of measurements m forthe standard qubit tomography equals to the expeted value of the hanged qubits inindiret sheme, i.e. m = N · p(c, x). This way, the expeted number of destroyed qubitswill be the same in the two ompared methods.The variane of the standard method is V stan
m = 1

m
· (1 − x2) if the number of mea-surements is m. In this ase m = N · 1+c2

2
, so W stan(c, x) = N · V stan

m = 2(1−x2)
1+c2

. We ande�ne e�ieny η as the quotient of W (c, x) and W stan(c, x), i.e.
η =

W (c, x)

W stan(c, x)
=

(c + 1/c)2 − 4x2

2(1 + c2)
· 1 + c2

2(1 − x2)
=

1
4
(c + 1/c)2 − x2

1 − x2
≥ 1,beause |c + 1/c| ≥ 2, equation holds if c = ±1.The above result learly shows, that the standard method is more aurate than theindiret one. Note, that if c = ±1, the two methods are the same, i.e. the standard qubittomography is the speial ase of the indiret method (see Figure 7).
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Figure 7: The e�ieny η (blue) ompared to onstant one (red).4.3 Modi�ed methodsThis setion deals with possible modi�ations of the original method in order toimprove its e�ieny.4.3.1 Reyling the unhanged qubitsThe idea in the following is to use the qubits whih remained unhanged during theindiret measurement to obtain more information about the state. So the measurementproedure is ontinued on the unhanged qubits until all of them is hanged.The variane of this modi�ed method omes as the speial ase of the variane (38)of the method de�ned in setion 4.1.1 with i = N . It is easy to see, that
V

recyc
N (c, x) = V ar

(
1 + c2

2c

N+ − N−

N+ + N−
| N+ + N− = N

)
=

1

N
·
[
1 −

(
2cx

1 + c2

)2
]

.The variane of standard method for N qubits is V
stan
N (c, x) = 1

N
· (1 − x2). Computing31



their quotient, it is
ηrecyc =

W recyc(c, x)

W stan(c, x)
=

V
recyc
N (c, x)

Vstan
N (c, x)

=
1 −

(
2cx

1+c2

)2

1 − x2
=

1 −
(

x
c+1/c

2

)2

1 − x2
≥ 1,sine |c + 1/c| ≥ 2. It means, that the indiret method annot overome the standardone even in the ase when all the available qubits are measured.However, it is expeted that the modi�ed estimation is more e�etive, than the originalone. The fat, that η = ηrecyc · 1

4
(c + 1/c)2 supports these expetations, i.e. η ≥ ηrecyc.4.3.2 Measuring four timesAs another way of modi�ation of the method desribed in subsetion 4.1.2, it ispossible to hange n, i.e. the number of subsequent measurements performed on theoupled qubits. In what follows, n is assumed to be 4. This implies that the numberof possible outomes are 24 = 16, but aording to Proposition 1 and Proposition 2 theoutomes like {+−−−}, {−+−−}, {−−+−} and {−−−+} are indistinguishable andorrespond to p−2 (see Figure 8).
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p+4, p+2, p0, p−2, p−4.The probabilities of suh groups of outomes an be determined using the result ofCorollary 4 multiplied by the appropriate binomial oe�ients:

p+4 = 1
16

(1 + 6c2 + c4 + 4c (1 + c2)x)

p−4 = 1
16

(1 + 6c2 + c4 − 4c (1 + c2)x)32



p+2 = 1
4
(1 − c2) (1 + c2 + 2cx)

p−2 = 1
4
(1 − c2) (1 + c2 − 2cx)

p0 = 3
8
(1 − c2)

2

(40)
Using the probabilities (40) it is easy to onstrut estimators similar to (37):

x̂1(N2, N−2, c) =
1 + c2

2c

N2 − N−2

N2 + N−2
(41)

x̂2(N4, N−4, c) =
1 + 6c2 + c4

4c (1 + c2)

N4 − N−4

N4 + N−4
(42)Estimators (41) and (42) are independent, thus it is possible to use a linear ombina-tion of them as an estimation:

x̂(N2, N−2, N4, N−4, c) = B · x̂1(N2, N−2, c) + (1 − B) · x̂2(N4, N−4, c), (43)where 0 ≤ B ≤ 1. In order to have an e�ient estimator (43), it's variane
B2 · V ar(x̂1) + (1 − B)2 · V ar(x̂2)should be minimal. The ovariane has been omitted beause of the independeny ofestimators (41) and (42). Similarly to the derivation in subsetion 4.2.1, the varianes ofthe independent estimators are obtained as:
W x̂1(c, x) =

1 + c4 + c2 (2 − 4x2)

2c2 − 2c6and
W x̂2(c, x) =

1

2c2
+

2

(1 + c2)2 − 8x2

1 + 6c2 + c4
,using W = lim

N→∞
N · V ar. The minimal value of the variane is where its derivative is 0.It is reahed with the following value of B:

B =
(−1 + c2)

(
− (1 + 6c2 + c4)

2
+ 16c2 (1 + c2)

2
x2
)

2 (1 + c2 (10 + 24c2 − 2c4 − c6 + 2 (1 + c2) (−5 − 6c2 + 3c4) x2))The optimal value of the variane is then
W four(c, x) =

(
(1 + c2)2 − 4c2x2

) (
1 + 6c2 + c4 − 4c

(
1 + c2

)
x
) (

1 + 6c2 + c4 + 4c
(
1 + c2

)
x
)

4c2
(
1 + c2

(
11 + 34c2 + 22c4 − 3c6 − c8 + 2 (1 + c2)2 (−5 − 6c2 + 3c4)x2

)) .
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Sine our other aim is to hange as few qubits as possible, it is neessary to writeup the ratio of hanged qubits. This is simply the omplementary probability of beingunhanged, i.e.
pfour(c, x) = 1 − p0 = 1 − 3

8

(
1 − c2

)2The e�ieny is the following:
ηfour =

W four(c, x) ·
(
1 − 3

8
(1 − c2)

2
)

1 − x2
.Figure 9 shows, that the relation 1 ≤ ηfour ≤ η holds, i.e. the modi�ation has slightlyimproved the performane of the estimator, but it is still worse than the standard one andthe estimator formula is muh more ompliated. It an be seen in the ase of both the

Figure 9: The quotients η (blue) and ηfour (green) ompared to onstant one (red).original and the modi�ed estimator's η, that for a given measurement state with c 6= ±1,
η is minimal, if x = 0. This means, that the estimators an ahieve smaller variane(better performane) in the ase of mixed states.34



4.3.3 Undoing the measurementIn this ase we use the method desribed in Setion 4.2, perform the estimation, andthen we re-measure the hanged qubits until they get bak to the initial state, i.e. untilthere is an equal number of measuring +1 and -1 outomes.Eah path that returns in 2k steps to the origin has the probability (1−c2

4

)k (thenumber of + and - outomes is both k). At the same time the number of pathes thatreturn to the initial state �rst in the 2k-th step is exatly 2 · Ck−1, where Ck is the k-thCatalan number. Let us use the notation r = 1−c2

4
, so the probability that the state willever return to the initial state, i.e we an undo the measurement, is

1 − pundo(c, x) =
∞∑

k=1

2 · Ck−1 rk = 2
∞∑

k=0

Ck rk+1 = 2r
∞∑

k=0

Ck rk.The �nally reeived sum is the generating funtion of Catalan numbers, and it has a wellknown losed formula:
∞∑

k=0

Ck rk =
1 −

√
1 − 4r

2rfrom that
1 − pundo(c, x) = 2r · 1 −

√
1 − 4r

2r
= 1 −

√
1 − 4r = 1 −

√
1 − 4

1 − c2

4
= 1 − |c|

Figure 10: The e�ieny ηundo35



and we get that the probability that the qubit never returns pundo(c, x) = |c|. Soaording the previous setion (W undo(c, x) = W (c, x)) the e�ieny is the following (seealso Figure 10):
ηundo =

(c + 1/c)2 − 4x2

2(1 + c2)
· |c|
1 − x2The greatest improvement is at small c values, but the original e�ieny (η) is theworst exatly here. Therefore, the situation is like in previous ases: we have ahieved animprovement in the e�ieny but it is still under the e�ieny of the standard method,i.e. 1 < ηundo < η (see Figure 10). Note that this alulation gives bak the trivial fat,that in the standard ase (c = 1) we never return to the original state: pundo = 1.
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5 SummaryIn this thesis several state estimation methods for a single qubit have been developedand examined. Wooters and Fields showed that the observable set onsisting orthogonalobservables results in the most information [24℄, so many people think that the standardsheme is optimal.In Chapter 3 some kind of generalization of the standard sheme was proposed. Thevariane of the estimation with di�erent number of measurements was investigated andit was shown that we an ahieve better variane if we do not measure the same numberin eah diretion but in a determined ratio whih depends on the real state of the qubit.Moreover, the variane will be optimal if one of the observables is in the diretion ofthe state of the quantum bit. Sine the state of qubit is unknown, we have proposeda two-step algorithm to ahieve the optimal variane asymptotially with probability 1.This way we an improve the variane if the state is not [0, 0, 0], while the modi�ation ismore e�ient when the state is more loser to the surfae of Bloh ball. That is beausethe method is using asymmetry, and near the pure states the asymmetry inreases. Somenumerial methods for the �nite number of measurement ase have also been developedin order to help the appliation of the method in realisti irumstanes.Chapter 4 presents indiret qubit tomography methods in the disrete-time ase [22℄.The statistial properties of the estimate in terms of the variane of the ML estimator andthe non-demolition probability have been analytially alulated in the ase of subsequentmeasurements applied in the x diretion while the qubits interat in the y diretionand the initial Bloh-vetor of the measurement qubit is [0, 0, c]. A way of �nding anoptimal ompromising measurement strategy between the asymptoti variane and thenon-demolition probability has been proposed. The e�ieny of the results have beenompared with a lassial 'standard' state estimation proedure available in the literature.Although the lassial one performs better by means of the variane, the indiret one givesa degree of freedom in the above mentioned trade-o� problem. The estimation methodhas also been modi�ed in a few ways to improve its preision. It has been shown thatthe modi�ed measurement strategies may reah the e�ieny of the standard method inthe limit when the omplete demolition situation is ahieved. This is in good agreementwith the results of D'Ariano and Yuen [3℄.
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