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1 Introdu
tionState estimation is a fundamental problem in both quantum information theory andquantum 
ontrol. In quantum 
ontrol [2℄ its role is the same as in the 
lassi
al 
ontroltheory, i.e. to give an estimate of the unmeasured time-dependent state variable in orderto be used in state feedba
k s
hemes. On the other hand, the measurement of a quantumme
hani
al system is probabilisti
, so even the measurement of a measurable quantityasks for estimation methods, this is why state estimation is an important �eld in quantuminformation theory [16, 17℄ , too.To set up a quantum state estimation, or a quantum state tomography method, twoingredients has to be given: the measurement strategy used for getting information,and the estimator mapping the measurement data to the state spa
e. If one uses a vonNeumann measurement, the proje
tive nature of the measurement for
es the use of several
opies of the same system being in the same state [20℄ , what is in general rather di�
ultto implement in pra
ti
e. However, in 
ertain physi
al 
ir
umstan
es, for example inquantum opti
s, it is natural to have several 
opies of the quantum system in the samestate.The properties of di�erent state estimations are investigated here in the simplest 
aseof a quantum bit (qubit). This problem may be tra
ed ba
k to the seventies [7℄ and thereis a well-known measurement s
heme 
alled the standard s
heme [17℄ for estimating thestate of a qubit. Although the state estimation problem is quite old, the interest in athorough mathemati
al analysis of the quantum state estimation pro
edures has been�ourishing re
ently [1, 6, 14, 19℄. The methods using von Neumann type measurementsfor qubits in both pure and mixed states are now quite well developed. For example,an adaptive observable sele
tion strategy based on a Blo
h ve
tor parametrization inspheri
al 
oordinates and on a Bayesian estimation method of qubits in mixed states isreported in the paper [5℄. However, there are only a few papers [18, 20℄ that deal withthe properties of the estimate when a �nite number of measurements are only available.Here the quality of the estimate is usually 
hara
terized by the 
ovarian
e matrix, thetra
e of whi
h 
an be minimized if an optimal s
heme is to be determined.The methods using von Neumann measurements are useless, if one aims at the estima-tion of dynami
ally evolving states, as in quantum 
ontrol. A possible way to 
ir
umventthe obstru
tion of the demolition property of von Neumann measurements is to use anindire
t measurement s
heme, where the 'unknown' quantum system is 
oupled with a'measurement' (also 
alled 'probe' or 'an
illa') system and the measurements are onlyapplied on the measurement system [9, 11℄. In the literature this method is often termed3



weak measurement [4, 23℄. Note, that most of the papers dealing with indire
t or weakmeasurement s
hemes use a 
ontinuous-time approa
h [10℄.The �rst aim of this paper is to generalize the standard s
heme su
h a way that weare able to measure in non-symmetri
 way, i.e. we are not using the Pauli matri
es asobservables and not measuring the same number in ea
h dire
tions. This 
an be usefulto de
rease the varian
e of estimator if the qubit is nearly pure. A further aim is to
onstru
t a 
ompromising estimator, that �nds the trade-o� between the e�e
tiveness ofthe estimate and the number of qubits that are un-a�e
ted by the measurements. This willbe a
hieved using indire
t measurement s
heme in the dis
rete time 
ase. The simplestpossible 
ase is 
onsidered, where both the unknown and the measurement quantumsystems are quantum bits.The paper is organized as follows. Chapter 2 
lari�es the notation used throughoutthe work and gives an introdu
tion to the mathemati
s of quantum me
hani
s. At theend of this 
hapter the main results are pla
ed in the 
ontext of the related literature.The generalization of standard s
heme is dis
ussed in Chapter 3. We will �nd the optimalratios of number of measurements and optimal observables, then giving an asymptoti-
ally optimal algorithm. Thereafter, some approximately e�
ient numeri
al approa
hesare presented for the 
ase of �nite number of measurements. Chapter 4 presents a sim-ple indire
t measurement strategy and its properties. Then a 
omparison with otherknown strategies are given and some modi�ed versions are presented. Finally, Chapter 5
on
ludes.
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2 Basi
 notionsThis 
hapter summarizes the ba
kground used in this thesis. Se
tions 2.1, 2.2 and 2.3follows the presentation of [17℄.2.1 State of a quantum systemThe states of �nite quantum systems are represented by n×n density matri
es (ρ(θ)),obeying the following 2 properties:
Tr(ρ(θ)) = 1 (1)

ρ(θ) ≥ 0 (2)In the simplest 
ase we are talking about the quantum bit (shortly qubit), whi
h is thekey obje
t of our examination. In this 
ase ρ is a 2 × 2 matrix, and the so 
alled Blo
hparameterization gives a geometri
ally 
lear viewpoint of the state-spa
e:
ρ(θ) =

1

2
(I + θ1σ1 + θ2σ2 + θ3σ3) , (3)where

I =

[
1 0

0 1

]
, σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i

i 0

]
, σ3 =

[
1 0

0 −1

]
,that is

ρ(θ) =
1

2

[
1 + θ3 θ1 − i · θ2

θ1 + i · θ2 1 − θ3

]
.The so 
alled Blo
h ve
tor θ gives an equivalent representation of the quantum states. Itis easy to see, that the se
ond property of density matri
es (2) transforms to

θ2
1 + θ2

2 + θ2
3 ≤ 1,in the Blo
h-parametrization. It means, that the state spa
e is the unit ball in R

3. Statesfor whi
h the equation holds are 
alled pure states, all the others are mixed states. Inwhat follows, the states of a quantum bit will be represented either as a density matrix,or as a Blo
h ve
tor.In Se
tion 4 we will 
ouple two separated qubits. Let us denote the Blo
h representa-tion of the unknown system and the probe (measurement devi
e), where both are qubits,as
ρS =

1

2
(I +

3∑

i=1

θS
i σi) , ρM =

1

2
(I +

3∑

i=1

θM
i σi), (4)5



where θS
i are the Blo
h parameters of the system qubit and θM

i are the Blo
h parametersof the measuring qubit. The state of the 
omposite system of two independent qubits isrepresented as a 4 × 4 density matrix:
ρS+M = ρS ⊗ ρM . (5)The above 4-level state is a spe
ial produ
t state that re�e
t the fa
t that the two qubitsare separated. If the state of a 4-level system 
an be des
ribed in the form of 
onvex
ombination of produ
t states

ρ12 =
∑

i

αi ρ
(i)
1 ⊗ ρ

(i)
2then it is 
alled separable state, else it is 
alled an entangled state.We 
an get the state of a subsystem of the 
omposite system using the redu
ed densityoperator. Denote the redu
ed density operator for the �rst subsystem of the state ρ12with ρ1, then

ρ1 = Tr2ρ12, (6)where Tr2 is the partial tra
e over the se
ond subsystem, i.e ρ1 need to satisfy the equation
Tr (ρ12(A ⊗ I)) = Tr(ρ1A) (7)for all self-adjoint operators A on C

2⊗2.2.2 Dynami
sThe S
hrödinger pi
ture is used here in dis
rete time that asso
iates a unitary U tothe time-evolution of the system su
h that
ρ(k + 1) = U(k)ρ(k)U(k)∗. (8)We will only use dynami
s for the 
oupled 4-level system, and only in one time-step:
ρ̂S+M = US+M ρS+M U∗

S+M . (9)The state of the 
omposite system after the intera
tion is des
ribed by ρ̂S+M in (9)where US+M is the overall system evolution unitary. Note that after the intera
tion theresulting state ρ̂S+M will be entangled in the general 
ase, even if the initial state ρS+Mwas separable (as in (5)).When we are interested in the dynami
al 
hange of the system S, the �rst redu
eddensity matrix should only be 
onsidered:
ρ̂S = TrM ρ̂S+M (10)6



where TrM is de�ned in (6 - 7).In order to have a simple parametrization of the intera
tion (
oupling) between theunknown and measurement qubit, the Cartan de
omposition [12, 21℄ of the dis
rete timeevolution unitary US+M is used in the form
US+M = L1e

ahL2 (11)where L1 and L2 are in SU(2) ⊗ SU(2), h ∈ R and a ∈ a with
a = i realspan{σS

1 ⊗ σM
1 , σS

2 ⊗ σM
2 , σS

3 ⊗ σM
3 } (12)Be
ause both L1 and L2 are in a produ
t form, they des
ribe the produ
t of the lo
aldynami
al e�e
ts LS

i and LM
i (i = 1, 2), and the intera
tion is parameterized by threereal parameters a1, a2 and a3.Therefore, the dynami
al equation of qubit S in (10) be
omes

ρ̂S = LS
1 TrM

(
eahρ̃S ⊗ ρ̃Mea∗h

)
LS∗

1 (13)where L1 = LS
1 ⊗ LM

1 , L2 = LS
2 ⊗ LM

2 both time dependent, and ρ̃S = LS
2 ρSLS∗

2 , ρ̃M =

LM
2 ρMLM∗

2 . In order to simplify the forth
oming 
omputations, we 
onsider the 
ase withno lo
al dynami
s, when LS
i = LM

i = I (i = 1, 2).Instead of the unitary des
ription (8) of the dynami
s, we 
an use also the so-
alledT-representation of the linear mapping θ(k − 1) 7→ θ(k) that 
orresponds to the originalstate transformation ρ(k − 1) 7→ ρ(k) in (8) with a real 3 × 3 matrix T , su
h that
θ(k + 1) = Tθ(k), (14)so the T matrix des
ribes the e�e
t of dynami
s on the Blo
h ve
tors.Example 1 Let the unitary be the following:

US+M = e−ih(a1σS
1
⊗σM

1
) (15)i.e. the qubits are intera
ting only in the x dire
tion. Computing the dynami
s a

ordingto (13) we obtain that the system dynami
s in T-representation is the following

θ̂S =




1 0 0

0 cos(2a1h) − sin(2a1h)θM 1

0 sin(2a1h)θM 1 cos(2a1h)


 θS, (16)if there were no measurements performed. 7



2.3 Von Neumann measurementsIn quantum me
hani
s measurements have a probabilisti
 nature. The subje
t ofmeasurements are self-adjoint n × n matri
es, so 
alled observables. Let the spe
tralde
omposition of an observable χ be the following:
χ =

∑

i

λiPi. (17)Where λi are the di�erent eigenvalues of χ, and Pi are the 
orresponding eigenproje
tions.The possible out
omes of the measurement are the di�erent λi eigenvalues and the
orresponding probability is
Prob(λi) = Tr(ρPi). (18)A key element of quantum measurements is that it will 
hange the a
tual state of thequantum system to

ρi =
PiρPi

TrPiρPi

, (19)if the out
ome of measurement is λi.Example 2 Measurement of the Pauli operator σ1:If one 
onsiders the measurement of the observable σ1, then the possible out
omesare the di�erent eigenvalues of the observable, i.e. ±1. The probabilities of the di�erentout
omes are
Prob(+1) = TrρE+1 = 1

2
(1 + θ1)

Prob(−1) = TrρE−1 = 1
2
(1 − θ1)respe
tively, where the spe
tral de
omposition of σ1 is

σ1 = E+1 − E−1 =
1

2

[
1 1

1 1

]
− 1

2

[
1 −1

−1 1

]
,The state after measurement 
an be

θ+1 =
[

+1, 0, 0
]T

, θ−1 =
[
−1, 0, 0

]T
.depending on the a
tual out
ome.2.4 Literature reviewThe state estimation methods developed for qubits in the literature are brie�y de-s
ribed in this se
tion. 8



2.4.1 Standard methodWe start with the most important method, the standard method [18℄, be
ause we willmake 
omparison with the standard method in all other 
ases.Three di�erent kinds of measurements are performed, they are represented by thethree Pauli matri
es σ1, σ2, σ3. Sin
e all the three are unitary their eigenvalues (whi
hare the possible values of the measurement) are ±1. If we measure σi on the state
ρ(θ) =

1

2

[
1 + θ3 θ1 − iθ2

θ1 + iθ2 1 − θ3

]then the probability of out
ome +1 is
Prob(+1i) =

1 + θi

2
.similarly to Example 2. From the physi
al point of view, σ1, σ2 és σ3 mean the spinmeasurement in dire
tions x, y and z, respe
tively.Be
ause of the high symmetry and the independen
y of 
omponents we 
an easilymake an estimation s
heme for the state θ. Suppose, that m measurements are performedin ea
h three dire
tions. Then the relative frequen
y νi of the out
omes +1 is a su�
ientstatisti
, so it is enough to use:

νi :=
mi

m
, where i = 1, 2, 3, and mi is the number of (+1)-s in the dire
tion of i.The least squares estimator is a widely known and used method whi
h minimizes thesquared error. If the relative frequen
ies resulting from the measurements are νi, thenthe deviation from the real value of the state 
an be written in the form (be
ause of theindependent measurements, there are no 
ross terms):

ϕm
LS(ν, θ) =

∑

i=1,2,3

(
νi −

1 + θi

2

)2We are going to minimize this expression. It is trivially minimal, when the expressionsin parenthesis are zeros. This way, knowing relative frequen
ies νi, an estimate 
an begiven for the Blo
h ve
tor θ:
Φm(ν) =




2ν1 − 1

2ν2 − 1

2ν3 − 1




(20)
9



Note that this estimation 
an provide physi
ally meaningless result (the state will beoutside of the Blo
h ball), but the probability of having false estimate asymptoti
allyvanishes as the number of measurement in
reases.The 
ovarian
e matrix (V standard) of this estimator is the following:
V standard =

1

m




1 − θ2
1 0 0

0 1 − θ2
2 0

0 0 1 − θ2
3


 (21)Be
ause two matri
es are usually not 
omparable, we will examine the tra
es of 
o-varian
e matri
es. If we have the opportunity to measure only N times, then m = N

3
,and the tra
e of the 
ovarian
e matrix will be the following:

Tr V standard
N (θ) =

9 − 3‖θ‖2
2

N
. (22)2.4.2 Minimal qubit tomographyReha
ek, Englert and Kaszlikowski has noti
ed in 2004, that in the standard methodthere is altogether 6 measurement dire
tions, but in the 3 dimensional 
ase it is enough tomeasure in only 4 dire
tions to get all the possible states [20℄. So they did not measure inthe dire
tion of the axis of the Blo
h ball, but the proje
tions were related to the verti
esof a regular tetrahedron, and they applied the maximum likelihood prin
iple to get anestimation for θ.It is possible to 
al
ulate the 
ovarian
e matrix of the estimator, but this is not
omparable with the 
ovarian
e matrix of the standard method in most of the 
ases, butif we 
ompare the tra
e, then we get that the standard method is more e�
ient if θ 6= 0[18℄.After all this 
on
eption is not useless, be
ause they suggested an adaptive pro
ess,too, whi
h rotates the measurement dire
tions so that a possible out
ome be
omes onthe opposite side of the assumed θ. This way they a
hieved that in that dire
tion theynever or only a few times get an out
ome, so they obtained a better result for pure statesthan if they used standard method.2.4.3 Indire
t (weak) measurementsIt is intuitively 
lear, that one must make a 
ompromise between the informationgained in a measurement and the disturban
e or demolition 
aused by it. The generalimpossibility of determining the state of a single quantum system is proved in [3℄ whatever10



measurement s
heme is used. This indi
ates that the e�
ien
y or pre
ision provided byan indire
t measurement s
heme is ne
essarily smaller than that of a s
heme that usesvon Neumann measurements.A related problem to the state estimation is to prepare the state of a given system ina spe
i�ed way. Most papers apply some kind spe
ial dedi
ated measurements either todrive the system into a desired state or to 
ompensate for the 'measurement ba
k-a
tion'.An appli
ation of weak measurements in bipartite state puri�
ation 
an be seen in [8℄ ,where the authors also use 
ontinuous time dynami
s. Korotkov and Jordan [13℄ haveshown that "it is possible to fully restore any unknown, pre-measured state, though withprobability less than unity." A similar method will used in our approa
h, but we willimprove a dis
rete-time model and make a state estimation from the measurements, too.

11



3 Optimization of the standard methodThis 
hapter is devoted to a family of a methods that attempt to improve the standardmethod by varying the number of measurements in di�erent dire
tions and by 
hangingthe dire
tions themselves.3.1 Determination of optimal measurement dire
tions and ratiosFirst we observe, that we measure in ea
h dire
tion the same number using the stan-dard method independently of the state of the system. A possible way to improve themeasurement s
heme is that we optimize the number of measurements in 
ertain dire
-tions su
h that the total varian
e (tra
e of the 
ovarian
e matrix) will be minimal.Assume we are allowed to measure on only N identi
ally prepared 
opy of the systemusing the standard observable formed by the Pauli matri
es and measure in the appro-priate dire
tions n1, n2 and n3 times (N = n1 + n2 + n3). Then similarly to the standardmethod the measurements in a 
ertain dire
tion only depend on the appropriate θi. Butthe measurements are still independent in ea
h dire
tion and the estimator will be thesame as (20):
Φn1,n2,n3(ν) =




2ν1 − 1

2ν2 − 1

2ν3 − 1




. (23)The di�eren
e that here:
νi :=

mi

ni

, where i = 1, 2, 3, and mi is the number of (+1)-s in the dire
tion of i.Theorem 1 The total varian
e is minimal if
n1 : n2 : n3 =

√
1 − θ2

1 :
√

1 − θ2
2 :
√

1 − θ2
3 (24)Proof: Similarly to (22) the 
ovarian
e matrix will be:

Vn1,n2,n3
(θ) =




1−θ2
1

n1
0 0

0
1−θ2

2

n2
0

0 0
1−θ2

3

n3




12



Our aim is to minimize the tra
e of Vn1,n2,n3
(θ) for all possible n1, n2, n3 (while forthe standard measurement s
heme n1 = n2 = n3 = n). This is a simple optimizationtask:

1 − θ2
1

n1
+

1 − θ2
2

n2
+

1 − θ2
3

n3
→ min,subje
t to: n1 + n2 + n3 = N .We 
an solve the above optimization problem using a Lagrange-fun
tion:

L(n1, n2, n3, λ) =
1 − θ2

1

n1
+

1 − θ2
2

n2
+

1 − θ2
3

n3
+ λ · (n1 + n2 + n3 − m)From the ne
essary 
onditions for the minimum in ea
h dire
tion we obtain:

λ =
1 − θ2

1

n2
1

=
1 − θ2

2

n2
2

=
1 − θ2

3

n2
3

�Corollary 1 The minimal tra
e of 
ovarian
e matrix is:
TrV minimal

N (θ) =
1

N

(√
1 − θ2

1 +
√

1 − θ2
2 +

√
1 − θ2

3

)2 (25)We 
an 
ompare it with the tra
e for the standard method (22) by using the e�
ien
yfa
tor:
η(θ) =

TrV n
minimal(θ)

TrV n
standard(θ)

=

(√
1 − θ2

1 +
√

1 − θ2
2 +

√
1 − θ2

3

)2

9 − 3 (θ2
1 + θ2

2 + θ2
3)We 
an easily get that 0 ≤ η(θ) ≤ 1, η(θ) = 1 if and only if θ1 = θ2 = θ3, when theminimal and standard s
hemes 
oin
ide, and the smaller is the value of η, the e�
ient isthe estimation.We examine 2 important examples:Example 3 If the state is in the x-axis dire
tion, i.e. θ = (x, 0, 0) then the e�
ien
y is

η(x, 0, 0) =

(√
1 − x2 + 2

)2

9 − 3x2
(26)The value of the e�
ien
y in x = 0 is η(0, 0, 0) = 1, and as the state gets 
loser to thesurfa
e the e�
ien
y fa
tor de
reases monotonously (i.e. η′(x, 0, 0) < 0, if x > 0, and

η′(x, 0, 0) > 0, if x < 0). The value on the surfa
e is η(1, 0, 0) = 2
3
. So as the true stateapproa
hes the surfa
e, the minimal s
heme be
omes better and better (see Figure 1).13
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Figure 1: E�
ien
y along the axis (x, 0, 0)Example 4 Consider the 
ase when the state is on the surfa
e, θ2
1 + θ2

2 + θ2
3 = 1In this 
ase we 
an observe a highly asymmetri
 pattern (see Figure 2): the measure-ment s
heme is the most e�e
tive if the true state is near the dire
tion of one axis.

Figure 2: E�
ien
y on the surfa
e14



Theorem 2 The minimal s
heme is the most e�e
tive on the Blo
h sphere (‖θ‖2 = r)in the axis dire
tions.Proof: Be
ause TrV n
standard(θ) = (9 − 3r2) · 1

n
, so the varian
e of standard method is
onstant on the whole sphere. Therefore it is enough to minimize (25):

TrV n
minimal(θ) =

1

n

(√
1 − θ2

1 +
√

1 − θ2
2 +

√
1 − θ2

3

)2

,subje
t to θ2
1 + θ2

2 + θ2
3 = r2.The above minimization problem 
an be solved by using spheri
al 
oordinates andusing 
riteria for partial derivatives, but be
ause of symmetry it is simpler with theLagrange-method. Noti
e, that (25) is minimal if √1 − θ2

1 +
√

1 − θ2
2 +

√
1 − θ2

3 is min-imal, so the 
orresponding Lagrange fun
tion is
L(θ1, θ2, θ3, λ) =

√
1 − θ2

1 +
√

1 − θ2
2 +

√
1 − θ2

3 + λ ·
(
θ2
1 + θ2

2 + θ2
3 − r2

)Its partial derivatives are equal to zero at the minima, so
2λθi −

θi√
1 − θ2

i

= 0, i = 1, 2, 3There are two di�erent types of solutions to the above equations: θi = 0, or θ2
i ={
onstantdepending on λ}. So we get 3 di�erent solutions from the derivative 
riteria

θ1 = θ2 = 0 and θ2
3 = r2 (27)

θ1 = 0 and θ2
2 = θ2

3 =
r2

2
(28)

θ2
1 = θ2

2 = θ2
3 =

r2

3
(29)If we examine these 
ases, we obtain that at (27) there are minimum pla
es, at (28) thereare saddles, and at (29) there are maximum pla
es. �Theorem 3 With the optimal 
hoi
e of the dire
tions and the number of measurementsthe varian
e of estimator 
an de
rease to

TrV n
optimal(θ) =

1

n

(
2 +

√
1 − r2

)2

. (30)Proof: The statement is the 
onsequen
e of Theorem 2 if we use su
h a 
oordinatesystem, that one of the axes is in the dire
tion of θ. Then the state will be [r, 0, 0] in thenew 
oordinate system, so using (25) we get (30). �Remark: The optimal 
ase is equivalent to Example 3. The improvement from theabove modi�
ation 
an be seen on Figure 1 and the e�
ien
y grows up to 2
3
, if the stateis on the surfa
e. 15



3.2 Adaptive algorithmIn the realisti
 
ase we have an unknown θ, so the optimal measurement dire
tionsand measurement ratios are unknown, too. Still the following statement is true:Theorem 4 The optimal varian
e (30) from Theorem 3 is a
hievable asymptoti
ally.Proof: We will give a measurement strategy for all N so that if N goes to in�nity thelimit of the total varian
e will be (30).We need to make at least a draft, "orientation" estimate of the varian
e that 
an befollowed by a re�ning step that applies the optimal measurement number ratios. A

ord-ing to Theorem 2, we 
an a
hieve the best result if one of the measurement dire
tionspoints to the dire
tion of the true Blo
h ve
tor. Therefore, if one rotates the measurementdire
tions after the initialization step driven by the draft estimate θ̃, then the �nal estima-tion step 
an be performed by using the new dire
tions and performing the measurementswith the optimal ratio.With the above strategy we 
an easily get an asymptoti
ally optimal algorithm. Letbe the length of initialization step Ninit. Then a su�
ient 
ondition is Ninit → ∞ and
Ninit

N
→ 0 (for example by 
hoosing Ninit =

√
N). Then θ̃ will 
onverge to θ, and ourestimation will be optimal with the number of measurements N−Ninit. Sin
e the varian
eis a 
ontinuous fun
tion of the measurement dire
tion and ratios and Ninit

N
→ 0 so thevarian
e goes to (30).There is only one problem with this s
heme. Namely it 
an happen that our estimationof θ may fall outside of the Blo
h ball, so ‖θ̃‖2 > 1. In this 
ase r > 1, so a

ordingto Theorem 1, the optimal ratio will 
ontain non-real numbers whi
h is obviously notpossible. If our state is mixed (‖θ‖2 < 1) then this problem does not arise, be
ause theprobability that θ̃ fall outside of a 
ir
le with radius ε and 
enter θ goes to zero a

ordingto the weak law of large numbers. So if ε is small enough then the probability of fallingoutside the Blo
h ball (‖θ̃‖2 > 1) goes to 0, too.If the state is pure (‖θ‖2 = 1), then the probability of falling outside the Blo
h ball(‖θ̃‖2 > 1) does not go to zero. So we apply the following modi�
ation to the abovealgorithm: We know that the estimator θ̃ is inside of the 
ir
le with radius ε(N) and
enter θ with 1 − δ(N) probability. So if we use a translation by ε(N) on the estimator

θ̃ in the dire
tion of the 
enter of the Blo
h ball, then this estimator (θ̂) will be inside ofthe Blo
h ball at least with 1− δ(N) probability. If ε(N) is 
onstant then δ(N) goes to 0a

ording to the weak law of large numbers. It is then possible with a little 
hange that
ε(N) goes to zero while δ(N) goes to 0, too. In this 
ase we get an estimator (θ̂) that is16



inside of the Blo
h ball with asymptoti
ally 1 probability, and the estimator θ̂ goes to θ(be
ause ε(N) → 0). So be
ause of the 
ontinuity this estimation will be asymptoti
allyoptimal. �Let us 
ompare this result with the standard method (22). Unfortunately we 
an not
ompare the above result with the minimal qubit tomography be
ause the authors didnot present any analyti
al result for the varian
e, only numeri
al ones for spe
ial θ-s. The
omparison 
an be seen in Figure 3.
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Figure 3: Comparison of di�erent methodsOur estimation s
heme is better than the standard one everywhere. Furthermore,when we are 
loser to the surfa
e the estimation is more e�
ient. That is be
ause thealgorithm uses the asymmetry in the number of measurements and near the surfa
e theasymmetry is greater.3.3 Numeri
al approa
hes for �nite number of measurementsAn almost surely asymptoti
ally optimal measurement s
heme was introdu
ed in The-orem 4, but in reality there is always a �nite number of measurements available. So this17



se
tion 
ontains the investigation of how the �nite 
ase 
hanges the theoreti
al results.In �nite 
ase we loose e�
ien
y be
ause the length of the initialization part is notnegligible. Therefore, an important question is how to sele
t the length Ninit. Another
ru
ial part of the algorithm des
ribed in Theorem 4 is that in �nite 
ase the draftestimation goes outside of the Blo
h ball with positive probability, whi
h needs to behandled. Here I give some possible algorithms to threat these problems.In �nite 
ase the 
al
ulations of varian
e are really 
ompli
ated so I investigate the
ases by simulations in MATLAB [15℄ to approximate the real varian
e of di�erent esti-mation s
hemes and 
ompare it with the theoreti
al result (30). During the simulationsthe whole estimation pro
ess was performed 10000 times and the mean square error was
omputed. The simulations 
ontain 3 di�erent 
ases of the total number of measurements:
N = 1000, 3000, and 5000. These numbers 
ome from the bound of 
omputational 
a-pa
ity.In order to investigate the behavior of the algorithm on di�erent real states, we per-form simulations on 3 di�erent states:

• θ = [0.95, 0, 0]: a mixed state in the axis dire
tion
• θ = [0.8, 0.5, 0.1]: a mixed state in a general dire
tion
• θ = [ 1√

3
, 1√

3
, 1√

3
]: a pure state in a general dire
tionIn all 
ases ‖θ‖2 is 
hosen to be big be
ause then the di�eren
e from the standardmethod will be signi�
ant. The results of the simulations are interpreted in tables withthe same stru
ture. In the �rst row the varian
e of standard method 
omputed from (22)
an be found. This is followed by the mean square errors obtained from the simulations.Finally the theoreti
al results from Theorem 4 are presented, 
omputed from (30).3.3.1 Using optimal ratios without rotationThe steps of the algorithm in
lude an initialization giving a draft estimate using thestandard s
heme (m = Ninit

3
), that is followed by a �nal estimate.In the initialization step a pre-de�ned fun
tion of the total allowable measurementnumber N is used: Ninit = Nα. If 0 < α < 1 then Ninit ful�lls the 
onditions dis
ussed inTheorem 4. In our simulation experiments the values α = 0.75 and α = 0.9 are applied.The optimal ratio of the measurement numbers n1, n2 and n3 (where n1 + n2 + n3 = N)was 
al
ulated from Theorem 1. In the �nal estimation step we measure in ea
h dire
tion

ni − m times, i.e. we take the number of measurements of the initialization phase alsointo a

ount. 18



In addition, there is a trade-o� between the length of the initialization step deter-mining the varian
e of the draft estimate θ̃ and that of the �nal estimation step. If theinitialization step is too short, then the draft estimation will be impre
ise, so the optimalratio will be far from n1, n2, n3. On the other hand if the initialization step is too longthen we 
an easily �over-measure� in some dire
tion, i.e ni < m = Ninit

3
, so we 
an notuse the optimal ratios in the 
orre
ting step be
ause we must measure ni−m times morein ea
h dire
tion, and in this 
ase it is a negative number.

[0.95, 0, 0] N=1000 N=3000 N=5000standard 0.00629 0.00210 0.00126
α = 0.75 0.00553 0.00186 0.00109
α = 0.9 0.00527 0.00179 0.00106optimal 0.00535 0.00178 0.00107

[0.8, 0.5, 0.1] N=1000 N=3000 N=5000standard 0.0063 0.0021 0.00126
α = 0.75 0.00636 0.00202 0.00124
α = 0.9 0.00620 0.00202 0.00122optimal 0.00536 0.00179 0.00107

[ 1√
3
, 1√

3
, 1√

3
] N=1000 N=3000 N=5000standard 0.006 0.002 0.0012

α = 0.75 0.00616 0.00203 0.00121
α = 0.9 0.00600 0.00201 0.00119optimal 0.004 0.00133 0.0008Table 1: Simulation results using optimal ratios without rotationThe results of simulation 
an be seen in Table 1. Our �rst observation is that thee�
ien
y does not depend well on the length on initialization step, i.e from α. But weget a bit better results for the α = 0.9 
ase. A

ording to Theorem 2, if θ = [0.95, 0, 0]then the varian
e is 
lose to the optimal, but in the θ = [0.8, 0.5, 0.1] and θ = [ 1√

3
, 1√

3
, 1√

3
]
ases the results are far from the optimal result be
ause then the real state is not 
loseto an axis. In the last 
ase when θ1 = θ2 = θ3 the varian
e of our method will be equalto the standard 
ase.3.3.2 Using rotation with simpli�
ationFrom Theorem 2 we know that if we want results to be 
lose to the optimal varian
e(30), then we need to rotate the axis of measurements. In reality this 
an be done byrotating some mirrors (as in [20℄) or using a Hamiltonian to rotate the state. The pointis that this 
an add some extra time to the measurement pro
ess, but if N is big this willbe irrelevant. 19



I will use the measurement s
heme des
ribed in Theorem 4. The length of initializationstep will be Ninit = Nα with α = 2
3
and α = 3

4
. Then I rotate a measurement dire
tionin the dire
tion of draft estimate θ̃. Then the optimal ratio (24) will 
hange to

ñ1 : ñ2 : ñ3 =

√
1 −

(
θ̃2
1 + θ̃2

2 + θ̃2
3

)
: 1 : 1, (31)be
ause in the new 
oordinate system the state of system is approximately (‖θ̃‖2, 0, 0). Ifthe draft estimation is outside of the Blo
h ball(‖θ̃‖2 > 1), then in (31) will be a nonreal(i.e. a 
omplex) number. Let us use notation ϕ(θ̃) for the non-trivial element of ratio.The simplest way is to handle the problem ‖θ̃‖2 > 1, that in this 
omplex 
ase we usea 
onstant ratio, i.e. ϕ(θ̃) = c. In our simulations we use c = 0.3 and c = 0.1. Thenwe measure another N −Ninit times and get a new estimate θ̂ for the state of the qubit.To avoid the loss of information from initialization step and get an unbiased estimate wewill use the Ninit

N
· θ̃ + N−Ninit

N
· θ̂ estimator during simulations.

[0.95, 0, 0] N=1000 N=3000 N=5000standard 0.00629 0.00210 0.00126
α=3

4 ,c=0.1 0.00593 0.00189 0.00112
α=2

3 ,c=0.1 0.00611 0.00205 0.00117
α=3

4 ,c=0.3 0.00552 0.00186 0.00111
α=2

3 ,c=0.3 0.00568 0.00188 0.00112optimal 0.00535 0.00178 0.00107
[0.8, 0.5, 0.1] N=1000 N=3000 N=5000standard 0.0063 0.0021 0.00126
α=3

4 ,c=0.1 0.00588 0.00205 0.00125
α=2

3 ,c=0.1 0.00600 0.00199 0.00120
α=3

4 ,c=0.3 0.00557 0.00193 0.00116
α=2

3 ,c=0.3 0.00559 0.00186 0.00114optimal 0.00536 0.00179 0.00107
[ 1√

3
, 1√

3
, 1√

3
] N=1000 N=3000 N=5000standard 0.006 0.002 0.0012

α=3
4 ,c=0.1 0.00487 0.00157 0.000935

α=2
3 ,c=0.1 0.00473 0.00155 0.000930

α=3
4 ,c=0.3 0.00494 0.00162 0.000987

α=2
3 ,c=0.3 0.00494 0.00162 0.000964optimal 0.004 0.00133 0.0008Table 2: Simulation results using rotation with simpli�
ationFrom the simulation results (see Table 2) we 
an �nd that this 
ase is not sensitiveto α, too. In 
ase θ = [0.95, 0, 0] and θ = [0.8, 0.5, 0.1] the c = 0.3 is more e�
ient, butin 
ase θ = [ 1√

3
, 1√

3
, 1√

3
], the c = 0.1 value will have better varian
e. This 
orresponds tothe simple fa
t that the value of ϕ(θ) is 
loser to 0.3 in the �rst two 
ases, while in last20




ase ϕ(θ) is 
loser to 0.1. In all three 
ases the optimal varian
e is well approximatedbut these varian
es atta
hed to di�erent parameters in di�erent 
ases.3.3.3 Using rotation with numeri
al Bayes estimationFrom the previous part it is 
lear that for di�erent θ values di�erent ϕ(θ) values areoptimal, so to obtain a better estimate we need to make an estimation from θ̃ to θ evenif ‖θ̃‖ > 1. We will use the numeri
al Bayes estimation to this purpose . We 
al
ulatethe probabilities to some element of a Cartesian grid in su
h a way that the total numberof the elements will be 
onstant, so this 
al
ulation requires 
onstant time even for huge
N values, thus it will be negligible. We only take into a

ount the elements of the gridthat are inside of the Blo
h ball so in this way we get an estimator θ̃∗ whi
h is alwaysinside of the Blo
h ball. In simulation we use ϕ(θ̃) = ν ·

√
1 −

(
(θ̃∗1)

2 + (θ̃∗2)
2 + (θ̃∗3)

2
),with ν = 1

2
and ν = 1

4
. The other details of the measurement s
heme is the same as inthe previous s
heme.

[0.95, 0, 0] N=1000 N=3000 N=5000standard 0.00629 0.00210 0.00126
α=2

3 , ν=1
2 0.00571 0.00190 0.00112

α=2
3 , ν=1

4 0.00610 0.00204 0.00120
α=3

4 , ν=1
2 0.00566 0.00187 0.00113

α=3
4 , ν=1

4 0.00590 0.00194 0.00116optimal 0.00535 0.00178 0.00107
[0.8, 0.5, 0.1] N=1000 N=3000 N=5000standard 0.0063 0.0021 0.00126
α=2

3 , ν=1
2 0.00557 0.00189 0.00114

α=2
3 , ν=1

4 0.00593 0.00204 0.00123
α=3

4 , ν=1
2 0.00552 0.00196 0.00120

α=3
4 , ν=1

4 0.00577 0.00210 0.00131optimal 0.00536 0.00179 0.00107
[ 1√

3
, 1√

3
, 1√

3
] N=1000 N=3000 N=5000standard 0.006 0.002 0.0012

α=2
3 , ν=1

2 0.00484 0.00158 0.000936
α=2

3 , ν=1
4 0.00476 0.00155 0.000928

α=3
4 , ν=1

2 0.00485 0.00158 0.000946
α=3

4 , ν=1
4 0.00475 0.00159 0.000931optimal 0.004 0.00133 0.0008Table 3: Simulation results using rotation with numeri
al Bayes estimationThe data of Table 3 show that the situation did not 
hange too mu
h. The lengthof the initialization does not a�e
t well the e�
ien
y, while for the θ = [0.95, 0, 0] and

θ = [0.8, 0.5, 0.1] 
ases the bigger ν is more e�
ient, but in 
ase of θ = [ 1√
3
, 1√

3
, 1√

3
]21



the smaller ν will lead us to better result. However the di�eren
es have been redu
ed
ompared to the previous algorithm.3.3.4 Comparison of di�erent algorithmsInstead of 
omparing the 10 di�erent measurement s
hemes (see the rows of Table1-3) let us 
hoose the most e�
ient ones.In 
ase of no rotation the α = 0.9 
ase is the most e�
ient. Similarly, if we regard the
ase with rotation using numeri
al Bayes estimation we 
an state that the ν = 0.5 
asehas better varian
es, let us 
hoose α = 2
3
(so the �rst data row of Table 3). Finally, inthe 
ase with rotation using simpli�
ation there are 2 nearly optimal but fundamentallydi�erent 
ases with c = 0.3 and c = 0.1. Let us 
hoose in both 
ases α = 2

3
(so the se
ondand fourth data row of Table 2). And �nally we will plot the optimal varian
e (30).To get 
omparable results for di�erent θ and N values we do not plot the varian
esof ea
h 
ases but the e�
ien
ies, i.e we normalize the values with the varian
e of thestandard method.
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Figure 4: Comparison of e�
ien
ies of di�erent algorithms22



The results 
an be seen in Figure 4. The e�
ien
y of the method without rotationdoes not depend on the purity (from ‖θ‖2), but on the distan
e from the axis. If thereal state is in the dire
tion of an axis (θ = [0.95, 0, 0]), then the a
hieved varian
e is thesmallest, in other 
ases it is bigger. If we use rotation then the key determining fa
toris the purity of the state. In the �rst two 
ases the value of ‖θ‖2 is roughly the samejust their dire
tion are di�erent, and indeed all three rotating measurement s
heme hassimilar e�
ien
y even by di�erent values of θ. In the 
ase of simpli�
ation there is are
ognizable di�eren
e between the light and dark blue marks. The numeri
al Bayesianapproa
h is a kind of 
ompromising result, near the minimum of blue lines. Probablywith a better 
hoi
e of ϕ(θ̃) the varian
e 
an show further improvement but this is outsideof the s
ope of this thesis.The fa
t is visible too, that the estimation of pure state is more 
ompli
ated thanestimation of a mixed state sin
e there is bigger gap between the simulation and theoret-i
al results. Note that all of these methods are more e�
ient than the standard one. Allof the methods begin with an initialization part so they 
an be 
ombined to use of theiradvantage, for example if we get that θ̃ is 
lose to an axis then we do not use rotationet
.

23



4 Indire
t measurement s
heme using 
oupled qubitsIndire
t measurement means that the proje
tive measurements are performed on theprobe system (being in state θM) atta
hed to the one we are interested in (θS). In the
omposite system (in state ρS+M) an indire
t measurement 
orresponds to the observablesof the form I ⊗ AM , where AM is a self adjoint operator on the Hilbert spa
e of system
M . For the sake of simpli
ity, it is assumed, that AM is a Pauli spin operator. The

Development:
h

θS(0)
Coupling:
ax,ay,azθM

Measurement:
Ι⊗σ� θS(k+1)

±1Figure 5: Signal �ow diagram of indire
t measurementmeasurement strategy is shown in Fig. 5. At ea
h time instant of the dis
rete time set,the measurement qubit is 
oupled to the unknown system S. They evolve a

ording tothe bipartite dynami
s (13) for the sampling time h, and at the end of the samplinginterval, a von Neumann measurement is performed on the measurement qubit. At thenext time instant, the previous steps are repeated.The above setting of the indire
t measurement allows us to adjust various parametersof the measurement strategy. These 
an be and will be used to make an optimal 
ompro-mise between the information gained from the measurement and the demolition 
ausedby the measurement ba
k-a
tion.The 
oupling parameters a1, a2, a3 of the Cartan de
omposition (11-12) determine how(in terms of strength and dire
tion) the measurement system is 
oupled to the unknownone. The sampling time h ampli�es this e�e
t and appears as a multipli
ative fa
tor tothe 
oupling parameters.The state of the measurement qubit (θM ) 
an be di�erent at ea
h time instant whi
hallows us in the future to introdu
e a feedba
k to the measurement proto
ol.It is important to note that one 
an make a 'no information - no demolition' situationby setting the 
oupling parameters to zero, and a 'maximal information - 
omplete de-molition' situation, too. Examples of su
h extreme 
ases will be given in the subse
tion4.1.2 and 4.2.2.
24



4.1 A simple example for indire
t measurementA simple spe
ial 
ase of an indire
t measurement is investigated analyti
ally hereto brighten the e�e
t of the proto
ol parameters. As we shall see later, this 
ase 
anbe used to sele
tively estimate one of the 
omponents of the unknown qubit's Blo
hve
tor, similarly to the so 
alled standard measurement s
heme [18℄ for single qubits. Astraightforward modi�
ation of the measurement setup leads to the estimators of theother two Blo
h ve
tor 
omponents.4.1.1 Measurement setupSuppose in the sequel that the qubits are intera
ting only in the y dire
tion for time h(sampling time). Afterwards, an indire
t measurement is performed, i.e. a von Neumannmeasurement of the observable I ⊗ σx on the 
omposite system with state
e−ih(a2σS

2 ⊗σM
2 ) · (ρS ⊗ ρM) · e−ih(a2σS

2 ⊗σM
2 )∗,For the sake of simpli
ity, 
hoose h and a2 in su
h a way, that 2a2h = 2π. The abovesetting 
orresponds to the parameters

h =
1

10
, a2 =

5

2
π, a1 = a3 = 0.The probabilities of the di�erent out
omes of I ⊗ σx's measurement are

Prob(+1) = 1
2
(1 + θS2θM 3)

Prob(−1) = 1
2
(1 − θS2θM 3).

(32)Now the probabilities depend on both the state of the unknown θS and that of themeasurement qubit θM . The post-measurement states are
θ+1

S =




θS3θM2+θS1θM1

1+θS2θM3

θS2+θM3

1+θS2θM3

θS3θM1−θS1θM2

1+θS2θM3




, θ−1
S =




θS3θM2−θS1θM1

1−θS2θM3

θS2−θM3

1−θS2θM3

−θS3θM1−θS1θM 2

1−θS2θM3




(33)
if +1 or −1 was the result, respe
tively. This measurement setup is useful for unknownstate estimation sin
e the probabilities and the new states depend on both θS and θM .This means, that we both gain information from the measurements and retrieve informa-tion in the new states after the measurement.25



4.1.2 Properties of repeated indire
t measurementsLet us 
on
entrate on the estimate of the se
ond unknown state 
o-ordinate, i.e. wewant to des
ribe the 
hange of θS2 (notation: x = θS2) during the measurements. Let usfurther assume that θM3 is 
onstant (denoted by c) and θM1 = θM2 = 0, i.e. θM = [0, 0, c]T .If c = 1 then we get the standard measurement s
heme, where
Prob(±1) =

1

2
(1 ± x) , x±1 = ±1It is easy to see from (33) that this would be a totally invasive measurement, i.e. theinformation about the true state would be lost, thus we assume |c| < 1.Propostion 1 If we measure �rst +1, and thereafter -1 (or vi
e versa), then the stateof θS2 (=x) will not 
hange.Proof : After the �rst measurement, x 
hanges to x+1 = x+c

1+cx
then from x+1 it turns tobe x+1,−1 = x+1−c

1−cx+1 =
x+c
1+cx

−c

1−c x+c
1+cx

= · · · = x. The reverse goes similarly.Corollary 2 All of the possible 
ases of states 
an be ordered in a line su
h a way, thatafter ea
h measurement we jump in the neighboring state on the left or right side.Propostion 2 If we measure �rst +1, and thereafter -1 (or vi
e versa), then the proba-bility of these out
omes doesn't depend on x.Proof : First from x it will be x+1 = x+c
1+cx

with probability: P = 1
2
(1 + cx) then from

x+1 it will be x with probability: Q = 1
2
(1 − cx+1) = 1

2
(1 − c x+c

1+cx
) = 1

2
1−c2

1+cx
. So theprobability of this out
ome is P · Q = 1−c2

4
. The reverse goes similarly.Corollary 3 If two out
ome sequen
es 
ontain the same number of +1 and −1 measure-ment out
omes, then their probabilities are the same.Corollary 4 The probability that there are k times +1 and l times −1 out
omes (k > l)in the sequen
e 
an be 
omputed as:

(
1 − c2

4

)l

· pk−land the state after this sequen
e of out
omes will be xk−l, where pn is the probabilityof that from n measurements all out
omes are +1s, and xn is the resulting state from
n measurement when all out
omes are +1s. So we 
an represent the sequen
e of themeasurement out
omes as a Markov-pro
ess.26



Propostion 3 pk is a linear fun
tion of x.Proof : The proof goes by indu
tion. Let pk := qk

2k and xk := yk

qk
, where (we will prove)

qk and yk are simple polynomials of c and x.If k = 0 then q0 = p0 = 1 and y0 = x.Next let us suppose that both qk and yk are simple polynomials, and pk is linear in x.Then
pk+1 = pk ·

1

2
(1 + cxk) =

qk

2k
· 1

2

(
1 + c

yk

qk

)
=

1

2k+1
· (qk + cyk).On the other hand pk+1 =

qk+1

2k+1 , so
qk+1 = qk + cyk. (34)Furthermore,

xk+1 =
xk + c

1 + cxk

=

yk

qk
+ c

1 + cyk

qk

=
yk + cqk

qk + cyk

=
yk + cqk

qk+1
.On the other hand xk+1 =

yk+1

qk+1
, therefore

yk+1 = yk + cqk. (35)Finally we 
on
lude that qk and yk are really simple polynomials, and from the re
ursionit 
an be seen that both qk and yk are linear in x, so pk is linear in x, too.The proof gives us a re
ursive 
al
ulation for xk and pk, so it is possible to build upa sto
hasti
 model based on the above 3 propositions, and develop a state estimationstrategy.4.2 Towards optimal quantum state estimation by indire
t mea-surementsLet us suppose that we have N identi
al 
opies of the 
omposite quantum system (thetwo 
oupled qubits, S and M). We shall use the following measurement strategy:1. Perform 2 subsequent measurements (a measurement pair) on ea
h 
opy with apre-spe
i�ed c = θM3 and 
ompute the maximum-likelihood (ML) estimate of x.2. Retain the 
opies on whi
h the measured out
omes were +1 and −1 (in any order)for further studies, be
ause they are not a�e
ted by the measurements, i.e. their
θS2 = x is left un
hanged (see Proposition 1).27



Note that the above implies n = 2 for the results in sub-se
tion 4.1.2. Now we investigatehow the sele
tion of c (the initial state of the measurement system) a�e
ts the varian
eof the estimate (we want it to be small), and the ratio of the un-a�e
ted system 
opies(we want this to be large).Denote the number of the (+1, +1) out
omes by N+, and the probability that ameasurement pair result in this out
ome by p+ = p2 = 1+c2+2cx
4

. Similarly, the numberof the (−1,−1) out
ome is denoted by N−, and its probability is by p− = 1+c2−2cx
4

. Thenthe number of the non-e�e
tive ((+1,−1) or (−1, +1)) out
omes is N0 = N −N+ −N−,and its probability is p0 = 1−c2

2
. Then the likelihood fun
tion of N measurement pairs isthe following polynomial distribution:

P =
N !

N+! N−! N0!
p

N+

+ p
N−

− pN0

0 (36)The maximum likelihood estimate of x is obtained by taking the logarithm of P in (36),and maximizing it with respe
t to x:
x̂ML(N+, N−, c) =

1 + c2

2c

N+ − N−

N+ + N−
(37)This estimate is well-de�ned if at least one of N+ or N− is positive, that holds withprobability one when number of measurements goes to in�nity. On the other hand, thisestimate is asymptoti
ally unbiased.4.2.1 The varian
e and the non-demolition probabilityIn the 
ase of the investigated measurement setup (see se
tion 4.1.1), the varian
e

VN of the Maximum Likelihood estimator (37) is as follows:
VN(c, x) =

N∑
i=1

V ar
(

1+c2

2c

N+−N−

N++N−

| N+ + N− = i
)
· Prob(N+ + N− = i) =

=
N∑

i=1

(
1+c2

2c

)2
1
i2

V ar (N+ − N− | N+ + N− = i) · Prob(N+ + N− = i)(38)where V ar(.) denotes the varian
e of a random variable.Let be Xj a random variable that takes the value +1 if the out
ome of the mea-surement pair is (+1, +1), and −1 when the out
ome is (−1,−1). Then Xj = 1 withprobability p+

p++p−
, and Xj = −1 with probability p−

p++p−
. These are the 
onditional prop-erties of being +1,+1 and −1,−1, if we know that the two out
ome is the same. Then

V ar (N+ − N− | N+ + N− = i) = V ar

(
i∑

j=1

Xj

)
= i · V ar(X1).28



From simple 
al
ulation we obtain:
V ar(X1) = 1 −

(
p+ − p−
p+ + p−

)2

= 1 −
(

2cx

1 + c2

)2Therefore, the varian
e of the Maximum Likelihood estimator is
VN(c, x) =

(
1 + c2

2c

)2
[
1 −

(
2cx

1 + c2

)2
]

N∑

i=1

1

i
· Prob(N+ + N− = i),and N∑

i=1

1

i
· Prob(N+ + N− = i) = E

(
1

N+ + N−

)
∼ 1

N(p+ + p−)
,where E denotes the mean value, and ∼ stands for asymptoti
 equality. Thus we obtain:

lim
N→∞

NVN (c, x) =
(c + 1/c)2 − 4x2

2(1 + c2)
= W (c, x)The other important aim would be to minimize the disturbed system instan
es, i.e. the
ases when the out
omes are (+1, +1), or (−1,−1). The probability of having su
hout
omes is p(c, x) = 1

2
(1 + c2). Note that W (c, x) 
an be regarded as the asymptoti
varian
e originating from a qubit, and p(c, x) as the probability that the state of qubitwill remain un
hanged during the estimation pro
ess.4.2.2 Optimal measurement strategyIf one wants to have a 
ompromising strategy, then a possible way is to minimize theexpression

Ψ(c, x) = min
c

[ A · W (c, x) + (1 − A) · p(c, x) ] , (39)where A ∈ R
+ is a normalized parameter (1 ≥ A ≥ 0) whi
h determines our trade-o�strategy. If A ≈ 1, then the aim is a

ura
y, while in the 
ase of A ≈ 0 we aim at minimaldemolition.Figure 6 shows the substantial part of the loss fun
tion Ψ(c, x) over the domain

(−1 ≤ x ≤ 1), (0.2 ≤ c ≤ 1). Note that the fun
tion is symmetri
 to the c = 0 line, butit is inde�nite at c = 0. It is seen that there is a de�nite optimal value c ≈ 0.6 for theinitial state of the measurement qubit in 
ase A = 0.1 that is the same for every x. In the
ase of A = 0.9, however, the minimum is taken at c = 1, i.e. at the 
omplete demolitionsituation.
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c Figure 6: The optimal measurement qubit state for di�erent A values: more information(A = 0.9, left) versus more non-demolished system (A = 0.1, right)4.2.3 Comparison with the standard methodIt is possible to 
ompare the above estimation s
heme with the so-
alled standardqubit tomography des
ribed in subse
tion 2.4.1, whi
h uses information obtained fromthe von Neumann measurements of the three Pauli matri
es.For the sake of reasonability, it is assumed that the number of measurements m forthe standard qubit tomography equals to the expe
ted value of the 
hanged qubits inindire
t s
heme, i.e. m = N · p(c, x). This way, the expe
ted number of destroyed qubitswill be the same in the two 
ompared methods.The varian
e of the standard method is V stan
m = 1

m
· (1 − x2) if the number of mea-surements is m. In this 
ase m = N · 1+c2

2
, so W stan(c, x) = N · V stan

m = 2(1−x2)
1+c2

. We 
ande�ne e�
ien
y η as the quotient of W (c, x) and W stan(c, x), i.e.
η =

W (c, x)

W stan(c, x)
=

(c + 1/c)2 − 4x2

2(1 + c2)
· 1 + c2

2(1 − x2)
=

1
4
(c + 1/c)2 − x2

1 − x2
≥ 1,be
ause |c + 1/c| ≥ 2, equation holds if c = ±1.The above result 
learly shows, that the standard method is more a

urate than theindire
t one. Note, that if c = ±1, the two methods are the same, i.e. the standard qubittomography is the spe
ial 
ase of the indire
t method (see Figure 7).
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Figure 7: The e�
ien
y η (blue) 
ompared to 
onstant one (red).4.3 Modi�ed methodsThis se
tion deals with possible modi�
ations of the original method in order toimprove its e�
ien
y.4.3.1 Re
y
ling the un
hanged qubitsThe idea in the following is to use the qubits whi
h remained un
hanged during theindire
t measurement to obtain more information about the state. So the measurementpro
edure is 
ontinued on the un
hanged qubits until all of them is 
hanged.The varian
e of this modi�ed method 
omes as the spe
ial 
ase of the varian
e (38)of the method de�ned in se
tion 4.1.1 with i = N . It is easy to see, that
V

recyc
N (c, x) = V ar

(
1 + c2

2c

N+ − N−

N+ + N−
| N+ + N− = N

)
=

1

N
·
[
1 −

(
2cx

1 + c2

)2
]

.The varian
e of standard method for N qubits is V
stan
N (c, x) = 1

N
· (1 − x2). Computing31



their quotient, it is
ηrecyc =

W recyc(c, x)

W stan(c, x)
=

V
recyc
N (c, x)

Vstan
N (c, x)

=
1 −

(
2cx

1+c2

)2

1 − x2
=

1 −
(

x
c+1/c

2

)2

1 − x2
≥ 1,sin
e |c + 1/c| ≥ 2. It means, that the indire
t method 
annot over
ome the standardone even in the 
ase when all the available qubits are measured.However, it is expe
ted that the modi�ed estimation is more e�e
tive, than the originalone. The fa
t, that η = ηrecyc · 1

4
(c + 1/c)2 supports these expe
tations, i.e. η ≥ ηrecyc.4.3.2 Measuring four timesAs another way of modi�
ation of the method des
ribed in subse
tion 4.1.2, it ispossible to 
hange n, i.e. the number of subsequent measurements performed on the
oupled qubits. In what follows, n is assumed to be 4. This implies that the numberof possible out
omes are 24 = 16, but a

ording to Proposition 1 and Proposition 2 theout
omes like {+−−−}, {−+−−}, {−−+−} and {−−−+} are indistinguishable and
orrespond to p−2 (see Figure 8).
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Figure 8: The possible out
ome-
ombinations result in �ve di�erent probabilities
p+4, p+2, p0, p−2, p−4.The probabilities of su
h groups of out
omes 
an be determined using the result ofCorollary 4 multiplied by the appropriate binomial 
oe�
ients:

p+4 = 1
16

(1 + 6c2 + c4 + 4c (1 + c2)x)

p−4 = 1
16

(1 + 6c2 + c4 − 4c (1 + c2)x)32



p+2 = 1
4
(1 − c2) (1 + c2 + 2cx)

p−2 = 1
4
(1 − c2) (1 + c2 − 2cx)

p0 = 3
8
(1 − c2)

2

(40)
Using the probabilities (40) it is easy to 
onstru
t estimators similar to (37):

x̂1(N2, N−2, c) =
1 + c2

2c

N2 − N−2

N2 + N−2
(41)

x̂2(N4, N−4, c) =
1 + 6c2 + c4

4c (1 + c2)

N4 − N−4

N4 + N−4
(42)Estimators (41) and (42) are independent, thus it is possible to use a linear 
ombina-tion of them as an estimation:

x̂(N2, N−2, N4, N−4, c) = B · x̂1(N2, N−2, c) + (1 − B) · x̂2(N4, N−4, c), (43)where 0 ≤ B ≤ 1. In order to have an e�
ient estimator (43), it's varian
e
B2 · V ar(x̂1) + (1 − B)2 · V ar(x̂2)should be minimal. The 
ovarian
e has been omitted be
ause of the independen
y ofestimators (41) and (42). Similarly to the derivation in subse
tion 4.2.1, the varian
es ofthe independent estimators are obtained as:
W x̂1(c, x) =

1 + c4 + c2 (2 − 4x2)

2c2 − 2c6and
W x̂2(c, x) =

1

2c2
+

2

(1 + c2)2 − 8x2

1 + 6c2 + c4
,using W = lim

N→∞
N · V ar. The minimal value of the varian
e is where its derivative is 0.It is rea
hed with the following value of B:

B =
(−1 + c2)

(
− (1 + 6c2 + c4)

2
+ 16c2 (1 + c2)

2
x2
)

2 (1 + c2 (10 + 24c2 − 2c4 − c6 + 2 (1 + c2) (−5 − 6c2 + 3c4) x2))The optimal value of the varian
e is then
W four(c, x) =

(
(1 + c2)2 − 4c2x2

) (
1 + 6c2 + c4 − 4c

(
1 + c2

)
x
) (

1 + 6c2 + c4 + 4c
(
1 + c2

)
x
)

4c2
(
1 + c2

(
11 + 34c2 + 22c4 − 3c6 − c8 + 2 (1 + c2)2 (−5 − 6c2 + 3c4)x2

)) .
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Sin
e our other aim is to 
hange as few qubits as possible, it is ne
essary to writeup the ratio of 
hanged qubits. This is simply the 
omplementary probability of beingun
hanged, i.e.
pfour(c, x) = 1 − p0 = 1 − 3

8

(
1 − c2

)2The e�
ien
y is the following:
ηfour =

W four(c, x) ·
(
1 − 3

8
(1 − c2)

2
)

1 − x2
.Figure 9 shows, that the relation 1 ≤ ηfour ≤ η holds, i.e. the modi�
ation has slightlyimproved the performan
e of the estimator, but it is still worse than the standard one andthe estimator formula is mu
h more 
ompli
ated. It 
an be seen in the 
ase of both the

Figure 9: The quotients η (blue) and ηfour (green) 
ompared to 
onstant one (red).original and the modi�ed estimator's η, that for a given measurement state with c 6= ±1,
η is minimal, if x = 0. This means, that the estimators 
an a
hieve smaller varian
e(better performan
e) in the 
ase of mixed states.34



4.3.3 Undoing the measurementIn this 
ase we use the method des
ribed in Se
tion 4.2, perform the estimation, andthen we re-measure the 
hanged qubits until they get ba
k to the initial state, i.e. untilthere is an equal number of measuring +1 and -1 out
omes.Ea
h path that returns in 2k steps to the origin has the probability (1−c2

4

)k (thenumber of + and - out
omes is both k). At the same time the number of pathes thatreturn to the initial state �rst in the 2k-th step is exa
tly 2 · Ck−1, where Ck is the k-thCatalan number. Let us use the notation r = 1−c2

4
, so the probability that the state willever return to the initial state, i.e we 
an undo the measurement, is

1 − pundo(c, x) =
∞∑

k=1

2 · Ck−1 rk = 2
∞∑

k=0

Ck rk+1 = 2r
∞∑

k=0

Ck rk.The �nally re
eived sum is the generating fun
tion of Catalan numbers, and it has a wellknown 
losed formula:
∞∑

k=0

Ck rk =
1 −

√
1 − 4r

2rfrom that
1 − pundo(c, x) = 2r · 1 −

√
1 − 4r

2r
= 1 −

√
1 − 4r = 1 −

√
1 − 4

1 − c2

4
= 1 − |c|

Figure 10: The e�
ien
y ηundo35



and we get that the probability that the qubit never returns pundo(c, x) = |c|. Soa

ording the previous se
tion (W undo(c, x) = W (c, x)) the e�
ien
y is the following (seealso Figure 10):
ηundo =

(c + 1/c)2 − 4x2

2(1 + c2)
· |c|
1 − x2The greatest improvement is at small c values, but the original e�
ien
y (η) is theworst exa
tly here. Therefore, the situation is like in previous 
ases: we have a
hieved animprovement in the e�
ien
y but it is still under the e�
ien
y of the standard method,i.e. 1 < ηundo < η (see Figure 10). Note that this 
al
ulation gives ba
k the trivial fa
t,that in the standard 
ase (c = 1) we never return to the original state: pundo = 1.
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5 SummaryIn this thesis several state estimation methods for a single qubit have been developedand examined. Wooters and Fields showed that the observable set 
onsisting orthogonalobservables results in the most information [24℄, so many people think that the standards
heme is optimal.In Chapter 3 some kind of generalization of the standard s
heme was proposed. Thevarian
e of the estimation with di�erent number of measurements was investigated andit was shown that we 
an a
hieve better varian
e if we do not measure the same numberin ea
h dire
tion but in a determined ratio whi
h depends on the real state of the qubit.Moreover, the varian
e will be optimal if one of the observables is in the dire
tion ofthe state of the quantum bit. Sin
e the state of qubit is unknown, we have proposeda two-step algorithm to a
hieve the optimal varian
e asymptoti
ally with probability 1.This way we 
an improve the varian
e if the state is not [0, 0, 0], while the modi�
ation ismore e�
ient when the state is more 
loser to the surfa
e of Blo
h ball. That is be
ausethe method is using asymmetry, and near the pure states the asymmetry in
reases. Somenumeri
al methods for the �nite number of measurement 
ase have also been developedin order to help the appli
ation of the method in realisti
 
ir
umstan
es.Chapter 4 presents indire
t qubit tomography methods in the dis
rete-time 
ase [22℄.The statisti
al properties of the estimate in terms of the varian
e of the ML estimator andthe non-demolition probability have been analyti
ally 
al
ulated in the 
ase of subsequentmeasurements applied in the x dire
tion while the qubits intera
t in the y dire
tionand the initial Blo
h-ve
tor of the measurement qubit is [0, 0, c]. A way of �nding anoptimal 
ompromising measurement strategy between the asymptoti
 varian
e and thenon-demolition probability has been proposed. The e�
ien
y of the results have been
ompared with a 
lassi
al 'standard' state estimation pro
edure available in the literature.Although the 
lassi
al one performs better by means of the varian
e, the indire
t one givesa degree of freedom in the above mentioned trade-o� problem. The estimation methodhas also been modi�ed in a few ways to improve its pre
ision. It has been shown thatthe modi�ed measurement strategies may rea
h the e�
ien
y of the standard method inthe limit when the 
omplete demolition situation is a
hieved. This is in good agreementwith the results of D'Ariano and Yuen [3℄.
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