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Chapter 1

Introduction

1.1 Background and motivation
Before the late 19th century it was a widely accepted consideration among researchers and

practitioners of physics that physics as a scientific field had been almost completely discov-
ered and that there were only some minor unanswered questions. These questions included
the description of e.g. thermal radiation and photoelectronic effect as well as dealing with the
inconsistencies in aether models [18]. However, the theories of physics at that time (since
then referred to as classical physics) seemed to be incapable of resolving these questions,
which was a very disturbing recognition leading to the development of new, revolutionary
theories and to paradigm shifts in physics around the turn of the 20th century for explaining
the mentioned phenomena. With these new theories a new branch of science, namely modern
physics, was born.

Basically, the areas of modern physics can be divided into two overlapping parts. The
first part is quantum theory providing tools and models for describing nature in small scales,
whereas the second part is relativity theory attempting to explain the phenomena arising in
large scales and besides high velocities [18]. Theories combining these two parts can also be
found in modern physics.

Quantum mechanics is a mathematical framework serving as a fundamental and insepa-
rable component of quantum theory. Due to the developments achieved based on quantum
mechanics, a number of physical systems became examinable and even controllable at the
atomic scale. However, quantum mechanics not only establishes an environment for mod-
els in quantum physics, but also provides the ground of quantum computation and quantum
information theory [7].

Quantum computation is an intensively researched field of computer science. Its purpose
is to adopt the models and results of classical computer science into the frame of quantum
mechanics, and to improve them by exploiting the new possibilities arising in the quantum
mechanical environment. The abstract, mathematical concepts of quantum computers have
already been developed, however, efficient physical realizations of such machines have not
been invented up to the present.

Analogously to bits in case of classical computers, in quantum computers quantum bits
serve as the basic units of information. Hence, quantum bits play a fundamental role in
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the theory of quantum computation. Quantum bits (also known as qubits) are two-level
quantum systems and thus — as it will be obvious after the first section of Chapter 2 —
their possible states significantly differ from the states of classical bits, hence qubits can
represent much more information than classical bits. A consequence of this fact is that when
quantum phenomena were attempted to be simulated on classical computer architectures, it
was realized that, although, classical computers could be programmed for such simulations,
they were totally inappropriate for this task due to the lack of performance originating from
the bounded state representation possibilities, however, quantum computers would be able
to implement these simulations efficiently in a straightforward way [7].

Nevertheless, quantum computers would not only be efficient in simulating quantum
phenomena. They would be able to achieve significant improvements in everyday tasks
being solved nowadays by classical computers. These improvements include algorithms
for searching, ordering and prime factorization with lower computational complexity, more
efficient data compression and communication methods as well as much safer cryptography
techniques, to mention only a few [7].

1.2 Problem statement and aims
Two-level quantum systems (or quantum bits) are the simplest nontrivial quantum sys-

tems. Since in quantum computation and quantum information theory they serve as the basic
units of information, their efficient measurement and estimation, which means the ‘read-
ing of the stored information’, is an essential and important problem. The measurement of
quantum bits is far not as easy as in case of classical bits, because on one hand, a single
measurement of a quantum system can extract only a ‘portion’ of the state, and on the other
hand, only one single measurement may affect the state drastically in an irreversible way [7].

For this reason many approaches have been proposed for estimating the states of quantum
systems, especially two-level quantum systems (see e.g. [10], [9], [11] and [12]). Recently
a Martingale based state estimation method has been developed, which has shown very
promising properties from the point of view of estimation efficiency [15]. However, the
drawback of this technique is that it is capable of estimating only one single dimension of
the state of a two-level quantum system. In order to estimate multiple dimensions of the
state, the estimation process has to be repeated for each dimension separately.

The aim of my master’s thesis work was to generalize the Martingale method by making
it capable of estimating multiple dimensions of the state of a given two-level quantum system
simultaneously, in the case when the state alters during the estimation process only due to
interacting with the measurement system, i.e. to extend the Martingale technique to multiple
dimensions, when — with the notions of Chapter 2 — there is no local time evolution in the
measured system. The extension had to deal with at least two-dimensions, but the ultimate
goal was to estimate the whole state of the given two-level quantum system simultaneously.
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1.3 Methodology
The extension of the Martingale method to multiple dimensions requires the solutions of

equations derived from the dynamics of coupled quantum systems. In other words, mathe-
matical expressions having nonlinear, trigonometric terms have to be appropriately parame-
terized.

Due to this complicated nature of the task that my master’s thesis aimed to solve, in
the first part of my work symbolic and numerical software computations were applied on
a personal computer. For this purpose, as the first step, a simulation environment was es-
tablished in Matlab (standing for “Matrix laboratory”) [6]. Matlab is a software framework
being a very efficient tool for computing with matrices, as its name suggests. Then, using
the implemented environment the proper general equations for parameterization were de-
rived. After that, numerical algorithms were applied in order to find appropriate values for
the parameters.

Since the results achieved by the symbolic and numerical computations led to the for-
mulation of strange, previously unexpected conjectures, in the second part of my work the
problem was investigated analytically and, as a result, theorems were formulated and proved
determining whether the conjectures made were correct or not.

Throughout the thesis it is assumed that the reader is familiar with linear algebra [5],
functional analysis [14], abstract algebra [1] and probability theory [3] on a graduate level
of Mathematics.

1.4 Thesis structure
At this point, at the end of the introductory chapter, the organization of this thesis is

described.
This first chapter, “Introduction”, discusses the context of my research starting with a

short description of the scientific field in question and the motivations for studying it. Then,
open problems and research directions are highlighted before declaring the objectives of my
research. After describing the aims, the methodology for accomplishing them is explained.
This chapter ends with presenting the structure of the thesis.

The second chapter, “Theoretical overview”, briefly describes the theoretical background
of my work, which is necessary in order to understand the new results I achieved. The first
section of the chapter explains the basics of quantum mechanics in a nutshell focusing on
the notions applied later both in the remaining part of the introduction and in the explanation
of the new results. After this, the decomposition of the time evolution of coupled two-level
quantum systems is described. The third part of the chapter introduces indirect measure-
ments, where both the general concept and the Martingale method are explained.

The third chapter, “Simulation based investigation of the extension possibilities of the
Martingale method”, describes the results I achieved using symbolic and numerical compu-
tations in the simulation environment I implemented in Matlab. The analysis in this chapter
followed two significantly different paths confirming each other. The most important for-
mulea derived by the symbolic computations, graphical illustrations of the results and the
consequences of the analysis are also presented in the descriptions.
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The fourth chapter, “Analytical characterization of indirect measurement cycles of two-
level quantum systems”, carries out an analytical investigation motivated by the unexpected
results of the previous chapter. This analysis formulates and proves statements about indi-
rectly measured two-level quantum systems. The chapter ends with two theorems regarding
the results of Chapter 3.

The last chapter, “Conclusions”, summarizes the thesis, draws some conclusions on my
research work and outlines possible objectives for further research.

This is followed by the “Bibliography”, which enumerates the referred literature.
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Chapter 2

Theoretical overview

The aim of this chapter is to concisely present the bases of those areas of quantum theory
that served as the ground of my work. Its purpose is to place my research into context
and to clarify its initial state. Although, even a basic discussion of these areas could easily
exceed the size of this thesis, after the brief introduction given in this chapter both the ideas
and the details of my new results as well as their contributions become understandable and
acquirable.

The first section of the chapter deals with the basic concepts of quantum mechanics and
two-level quantum systems. Then, a decomposition method of the dynamics of coupled
two-level quantum systems is described. The third section introduces the general concept
of indirect measurement, explains its application for two-level systems and describes the
so-called Martingale method.

2.1 Quantum mechanical bases
Quantum mechanics is a mathematical framework [7], with the help of which quantum

systems and quantum phenomena may be modeled appropriately. The states and behaviors
of quantum systems can be described based on the quantum mechanical postulates, which
are considered to be the fundamental building blocks of quantum theory.

2.1.1 Postulates of quantum mechanics
The postulates of quantum mechanics have different equivalent forms in the literature

[7]. Each form has exactly the same expression power, however, in different circumstances
different forms provide easier usability. Due to the areas touched by my research, during my
work it was reasonable to use the following forms [7].

Postulate 1. To every closed physical system a state space can be assigned,
which is a separable complex Hilbert-space [14]. The system can be completely
represented by its density operator (or density matrix) being a trace-one positive
semidefinite operator acting on the state space. If a quantum system is in a
state characterized by the density operator ρi with probability pi, then its density
matrix is equal to

∑
i piρi.
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Postulate 2. The time evolution of every closed quantum system, i.e. the se-
ries of states the system passes through, can be described by a two-parameter
{U(t1, t2)} unitary operator group. From state ρ(t1) in time t1 the state ρ(t2) in
time t2 can be obtained using the following equation:

ρ(t2) = U(t1, t2)ρ(t1)U(t1, t2)
∗, (2.1)

where ∗ denotes the adjoint (conjugate transpose) of the specified matrix.

Postulate 3. The measurement of quantum systems, i.e. the examination of their
states, can be modeled by the application of the measurement operators {Mm}
acting on the state space of the system being measured and fulfilling the equa-
tion

∑
mM

∗
mMm = I. The index m of a particular measurement operator corre-

sponds to the outcome of the measurement. If the state of a quantum system is ρ
before the measurement, then the probability of outcome m is

Tr(MmρM
∗
m), (2.2)

where Tr and ∗ denote the trace and the adjoint (conjugate transpose) operators,
respectively, and the state of the system after the measurement becomes

MmρM
∗
m

Tr(MmρM∗
m)
. (2.3)

Postulate 4. The state space of composite (compound) quantum systems can be
represented by the tensor product of the component systems. Furthermore, con-
sidering a compound system with n components, where the states of the com-
ponents are described by the density matrices {ρi}ni=1, then the total state of the
compound system is equal to ρi ⊗ ρ2 ⊗ · · · ⊗ ρn.

2.1.2 Pauli matrices
The Pauli matrices have a fundamental role in the theory of two-level quantum systems

due to the well-known fact [14] that every self-adjoint matrix A of type 2 × 2 can be repre-
sented in the basis of the Pauli matrices as follows:

A =
3∑
i=0

λiσi, (2.4)

where {σi}3i=0 are the Pauli matrices:

σ0 = I =

[
1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (2.5)

After some calculations Table 2.1 shows the products of different Pauli matrices. Since
matrix multiplication is associative, based on this table it is straightforward to see that
the identity matrix, the three other Pauli matrices multiplied by the imaginary unit and
the additive inverses of these matrices together with matrix multiplication form a group
({± I,±iσ1,±iσ2,±iσ3}, ·) being isomorphic to the Quaternion group with correspon-
dences 1↔ I, i↔ iσ3, j ↔ iσ2, k ↔ iσ1.
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Table 2.1: Products of Pauli matrices

σ0 σ1 σ2 σ3
σ0 σ0 σ1 σ2 σ3
σ1 σ1 σ0 iσ3 −iσ2
σ2 σ2 −iσ3 σ0 iσ1
σ3 σ3 iσ2 −iσ1 σ0

2.1.3 Bloch vector representation
Two-level quantum systems, i.e. those systems, whose state space is C2, are the quantum

bits, or alternatively qubits. According to Postulate 1 the states of qubits can be described by
density operators of type 2 × 2. As it was mentioned above, every self-adjoint matrix A of
type 2× 2 can be represented in the basis of the Pauli matrices (cf. Eq. 2.4).

Since density operators are trace-one positive semidefinite matrices, it can be shown [8]
that a matrix A is a density matrix if and only if for the coefficients of its representation
in the Pauli basis λ0 = 1

2
and

∑3
i=1 4λ

2
i ≤ 1. For technical purposes the coefficients λi

are commonly substituted by the coefficients xi := 2λi (i ∈ {0, 1, 2, 3}). Thus, a density
operator ρ has the following form:

ρ =
1

2
(I+x · σ), where (2.6)

x = (x1, x2, x3), σ = (σ1, σ2, σ3).

This way a representation is obtained, where the state is characterized by the Bloch vector
x within the 3-dimensional closed unit ball, the Bloch ball.

Since the Pauli matrices are orthogonal to each other, coordinate k ∈ {1, 2, 3} of the
Bloch vector can be extracted from the density matrix ρ by calculating the inner product

Tr(ρ∗σk) = Tr(ρσk) = Tr

[
1

2

(
I+

3∑
i=1

xiσi

)
σk

]
= xk. (2.7)

2.1.4 Entangled states
Consider a composite system established from two two-level component quantum sys-

tems. Assume that the components have the same initial states

ρS =

[
1 0
0 0

]
= ρA. (2.8)

Then, according to Postulate 4 the initial state of the total system is

ρT =

[
1 0
0 0

]
⊗
[
1 0
0 0

]
=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (2.9)
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Assume that on the first system component a time evolution described by the Hadamard
transform

UH =
1√
2

[
1 1
1 −1

]
(2.10)

is applied followed by the controlled not transform

Ucn =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (2.11)

on the whole system — which operations are by the way fundamental building blocks in the
theory of quantum computation [7].

Then, the resulting state is a so-called Bell state [7] — also having an important role in
quantum computation — that can be expressed using Postulate 2 as follows:

ρBell = Ucn(UH⊗ I)(ρS⊗ρA)(UH⊗ I)∗U∗cn =
1

2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 =
1

2

4∑
i=1

Ei⊗Ei, (2.12)

where

E1 =

[
1 0
0 0

]
, E2 =

[
0 1
0 0

]
, E3 =

[
0 0
1 0

]
, E4 =

[
0 0
0 1

]
. (2.13)

However, the obtained Bell state is not in the space spanned by the tensor products of
second order quadratic complex matrices, i.e. ρBell /∈ M2(C) ⊗ M2(C), otherwise since
{Ei}4i=1 is a basis of M(C)2,

ρBell =

(
4∑
i=1

αi,SEi

)
⊗

(
4∑
j=1

αj,AEj

)
=

4∑
i=1

4∑
j=1

αi,Sαj,AEi ⊗ Ej (2.14)

would hold for appropriate coefficients αi,S, αj,A ∈ C (i, j ∈ {1, 2, 3, 4}), and then

∀i 6= j : αi,Sαj,A = 0 (2.15)

would follow, consequently, at most one of the products {αi,Sαi,A}4i=1 could be nonzero,
which would be a contradiction, since all these products must be equal to 1

2
according to

Eq. 2.12.
Besides the fact that the relation M2(C) ⊗M2(C) ( M4(C) holds, this example shows

more. Namely, that it is easy to find initial states and unitary operators, for which after time
evolution the state of the composite system cannot be expressed by the tensor product of
component states.

This phenomenon can also be observed in more general cases, when either the number
of the component systems is greater or the state spaces of the components are higher dimen-
sional Hilbert-spaces.

Such composite states that cannot be expressed by the tensor product of component states
are the entangled states.
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2.1.5 Partial trace
Postulate 4 describes the way for computing the total state of a composite quantum sys-

tem based on the states of its components. The reverse method also becomes of interest when
the total state is known and the states of particular components are inquired.

For this purpose the partial trace operator can be introduced [7]. Before defining this
operator, it should be noted that in case of entangled states, no exact reverse method may
exist, in the sense that whatever component states are obtained by any operations, their tensor
product will certainly not be the entangled state by definition.

Assume a composite quantum system established from two components, where the com-
ponents are two-level quantum systems in states ρ1 and ρ2. Then, the total state is

ρT = ρ1 ⊗ ρ2 :=


a1,1 a1,2 a1,3 a1,4
a2,1 a2,2 a2,3 a2,4
a3,1 a3,2 a3,3 a3,4
a4,1 a4,2 a4,3 a4,4

 (2.16)

The partial traces for the first and the second components, Tr1 and Tr2, are meant to
extract the second and the first component states, ρ2 and ρ1, respectively, from the composite
state. Hence the definitions of the partial traces are

Tr1(ρT ) :=

[
a1,1 a1,2
a2,1 a2,2

]
+

[
a3,3 a3,4
a4,3 a4,4

]
, (2.17)

Tr2(ρT ) :=

 Tr

[
a1,1 a1,2
a2,1 a2,2

]
Tr

[
a1,3 a1,4
a2,3 a2,4

]
Tr

[
a3,1 a3,2
a4,1 a4,2

]
Tr

[
a3,3 a3,4
a4,3 a4,4

]
 . (2.18)

It is easy to see that if the total state is not entangled, then the partial trace always extracts
the appropriate component states from the tensor product.

The fact is worth mentioning that for arbitrary tensor product A⊗B the following holds
true:

Tr1(A⊗B) = B · Tr(A), (2.19)

Tr2(A⊗B) = A · Tr(B). (2.20)

It can also be verified that the application of the partial trace operator on a composite
state always results in a valid state, even if the composite state is entangled.

Although, the partial trace operator can be generalized in a straightforward way to com-
posite systems having more components being more general, this generalization is omitted
here, because in this thesis only the above described special case will be used.

2.2 Decomposition of the time evolution of coupled two-
level quantum systems

Postulate 2 and Postulate 3 clearly describe the dynamics of a simple two-level quantum
system during time evolution and measurement. It is easy to verify that for every quantum
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state the application of arbitrary possible time evolution and measurement results in a valid
quantum state.

However, when two two-level quantum systems are attached (coupled) to each other,
the description is more difficult as entangled states arise. Although, it is still true that the
postulates describe the dynamics of the whole system, the components can no longer be
analyzed individually.

Fortunately, a decomposition method has been invented [13] easing the difficulty of the
description of the time evolution of coupled two-level quantum systems.

Based on representation theoretical considerations [2], using Cartan decomposition (see
e.g. [4]), every unitary operator U ∈ SU(4) acting on the composite system can be decom-
posed in the following way [13]:

U = (L1,1 ⊗ L1,2)e
at(L2,1 ⊗ L2,2), (2.21)

where L1,1, L1,2, L2,1, L2,2 ∈ SU(2) express the local time evolutions of the component
systems and a = i(c1σ1 ⊗ σ1 + c2σ2 ⊗ σ2 + c3σ3 ⊗ σ3) for appropriate c1, c2, c3 ∈ R values
forming a real parameter vector

c := (c1, c2, c3) ∈ R3. (2.22)

(In the above expressions SU(n) denotes the special unitary group of order n.)
Based on Table 2.1 the products of matrices σi ⊗ σi (i ∈ {0, 1, 2, 3}) are presented

in Table 2.2. Considering that matrix multiplication is associative, this table shows that
({±σ0 ⊗ σ0,±σ1 ⊗ σ1,±σ2 ⊗ σ2,±σ3 ⊗ σ3}, ·) is a group, where the operator ‘·’ is matrix
multiplication.

Table 2.2: Products of matrices σi ⊗ σi (i ∈ {0, 1, 2, 3})

σ0 ⊗ σ0 σ1 ⊗ σ1 σ2 ⊗ σ2 σ3 ⊗ σ3
σ0 ⊗ σ0 σ0 ⊗ σ0 σ1 ⊗ σ1 σ2 ⊗ σ2 σ3 ⊗ σ3
σ1 ⊗ σ1 σ1 ⊗ σ1 σ0 ⊗ σ0 −σ3 ⊗ σ3 −σ2 ⊗ σ2
σ2 ⊗ σ2 σ2 ⊗ σ2 −σ3 ⊗ σ3 σ0 ⊗ σ0 −σ1 ⊗ σ1
σ3 ⊗ σ3 σ3 ⊗ σ3 −σ2 ⊗ σ2 −σ1 ⊗ σ1 σ0 ⊗ σ0

Using this group property and the Taylor-series of the exponential function it can be
proved [13] that

eat =
3∑
i=0

µi(c, t)σi ⊗ σi, (2.23)

where
µ0(c, t) = cos(c1t) cos(c2t) cos(c3t) + i sin(c1t) sin(c2t) sin(c3t), (2.24)

µ1(c, t) = cos(c1t) sin(c2t) sin(c3t) + i sin(c1t) cos(c2t) cos(c3t), (2.25)

µ2(c, t) = sin(c1t) cos(c2t) sin(c3t) + i cos(c1t) sin(c2t) cos(c3t), (2.26)
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µ3(c, t) = sin(c1t) sin(c2t) cos(c3t) + i cos(c1t) cos(c2t) sin(c3t). (2.27)

Thus, by substituting Eq. 2.23 into Eq. 2.21 and using the properties of the tensor product,
the decomposition of U ∈ SU(4) becomes

U =
3∑
i=0

µi(c, t)L1,1σiL2,1 ⊗ L1,2σiL2,2. (2.28)

2.3 Indirect measurement
In contrast with time evolution, during the measurement of a quantum system the state

of the system is strongly affected by the measurement procedure. Consequently, as it can
be clearly seen from Postulate 3, the state may alter drastically in an irreversible way. This
phenomenon is the measurement back-action [7].

In order to avoid this unfavorable back-action indirect measurement can be applied.

2.3.1 General concept
Generally speaking, when indirect measurement is performed, instead of examining the

original quantum system, an auxiliary or ancilla system coupled to the original one is mea-
sured iteratively. In each iteration the following steps take place [17]:

1. An ancilla system possessing a known initial state is coupled with parameters c =
(c1, c2, c3) (see Eq. 2.22) to the system to be measured.

2. The state of the resulting compound quantum system evolves according to Postulate 2
and Postulate 4 (by unitary evolution described in Eq. 2.28) during a predefined time
period t.

3. Finally, the ancilla system is measured directly and the two systems are decoupled.
The decoupling of the systems is modeled by applying the partial trace operator (see
Subsection 2.1.5) on the ancilla system.

In Step 3 the probability distribution of the outcome of the measurement performed on
the ancilla system is determined by the known initial state in Step 1 and the time evolution in
Step 2 depending on the initial state of the measured system. Hence, considering the initial
state of the ancilla system, the coupling parameters c and the length of the time evolution t,
and based on the statistics of the outcomes of the indirect measurement during the iterations,
the original state of the measured quantum system can be estimated.

2.3.2 Martingale method for the indirect measurement of two-level
quantum systems

In the remaining part of this section the indirect measurement of two-level quantum sys-
tems will be discussed using the Bloch vector representation (see Subsection 2.1.3).
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Certain coordinates of the qubits (x1, x2 and x3) can be measured by the respective
projections of the spectral decompositions of the {σi}3i=1 Pauli matrices. These projections
play the role of the measurement operators in Postulate 3. As it can be easily verified, the
eigenvalues of each Pauli matrix are +1 and −1, furthermore the projections in the spectral
decomposition of σi = (+1)E

(i)
+1 + (−1)E(i)

−1 (i ∈ {1, 2, 3}) are the following:

E
(i)
±1 =

1

2
(I±σi). (2.29)

Based on Postulate 3, Eq. 2.29 and Table 2.1, the outcome of the measurements along
coordinate i can take values ±1 with probabilities

P(±1) = Tr
(
ρE

(i)
±1

)
=

1

4
Tr ((I+x · σ)(I±σi)) =

=
1

4
(Tr(I)± Tr(xi · I)) =

1± xi
2

, (2.30)

because the three Pauli matrices {σi}3i=1 are traceless.
Denote by xi(k) (i ∈ {1, 2, 3}) a particular coordinate (first, second or third) of the Bloch

vector x(k) of the measured system in iteration k of the indirect measurement. Consider the
special case, when [16]

• there is no local time evolution in the component systems, i.e. in Eq. 2.28

L1,1 = L1,2 = I = L2,1 = L2,2, (2.31)

• for the parameters of the coupling cit = −π
4

and if j 6= i, then cj = 0 hold true,

• the measurement operators are the projections of the spectral decomposition of
(I⊗σj), where j takes the values 1, 2 and 3 exactly when the value of i is 2, 3 and
1, respectively.

Then, it can be shown [17] that the state in the subsequent iteration depending on the outcome
given by the ancilla system is

xi(k + 1) =

{
xi(k)+yj(k)

1+xi(k)yj(k)
, with probability 1+xi(k)yj(k)

2
(outcome +1)

xi(k)−yj(k)
1−xi(k)yj(k) , with probability 1−xi(k)yj(k)

2
(outcome −1)

, (2.32)

where j takes the values 1, 2 and 3 exactly when the value of i is 3, 1 and 2, respectively,
and yj(k) is the corresponding coordinate of the ancilla state. Hereafter, assume that in each
iteration identical ancilla qubits are used, i.e. the ancilla state is the same at the beginning of
every iteration, yj(k) ≡ yj .

It can be proved [16] that if the difference d between the number of +1 and−1 outcomes
is the same in two different measurement series, then the final values of xi after the whole
measurement process are equal. Therefore, the value of coordinate i can be characterized by
its initial value and this difference d. Henceforth, these states will be denoted by xd, where
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x0 := xi(0). In further notations coordinate i will not appear in the subscripts, however, bear
in mind that the formulae below correspond to only the selected coordinate i.

It is rather straightforward to verify that if the state is expressed in the form xd =
zd
qd

and
if the inequality d > 0 holds true, then the values of xd are obtained by the recursion [15]

(zd+1, qd+1) = (zd + yjqd, qd + yjzd), (2.33)

where z0 = x0 and q0 = 1. It can be easily seen that zd and qd are linear in terms of x0,
moreover, if zd = ad + bdx0, then qd = bd + adx0, where ad and bd are polynomials of yj .
Utilizing these facts:

xd =
ad + bdx0
bd + adx0

. (2.34)

Similarly, it can be obtained that

x−d =
−ad + bdx0
bd − adx0

, (2.35)

where ad and bd are the very same as above.
According to this discussion the state estimation of quantum bits involving indirect mea-

surement can be reduced to the task of estimating x0 on the basis of the ancilla state coordi-
nate yj and the outcomes of the measurements.

By substitution it can be easily verified that the above defined stochastic process xi(k)
is a martingale, for which Doob’s Optional Stopping Theorem [3] is applicable with the
stopping time τ = inf{k : |d(k)| = D}, where d(k) is the difference between the number
of outcomes +1 and −1 in terms of the number of executed measurement iterations and
D ∈ Z+ is a predefined parameter. Due to Doob’s theorem if p+ = P(x(τ) = +D), then the
following equation must hold true:

x0 = Ex0 = Ex(0) = Ex(τ) = Exd(τ) = p+x+D + (1− p+)x−D. (2.36)

Rearranging this and substituting the corresponding variables of Eq. 2.34 and Eq. 2.35:

p+ =
x0 + x−D
x+D + x−D

=
1

2

(
1 +

aD
bD
x0

)
. (2.37)

Expressing the measured coordinate:

x0 = (2p+ − 1)
bD
aD
. (2.38)

On the basis of the Law of Large Numbers [3], if measurement series are performed
repeatedly — on different copies of the measured qubit — until the difference between the
number of outcomes +1 and −1 reaches +D or −D, then the ratio of the number of mea-
surement series (N+), where +D was reached, and the number of all measurement series
(N ), i.e. the number of qubits consumed, tends to p+ as N tends to infinity. Since p+ is
linear in terms of x0 (see Eq. 2.37), an unbiased x̂0 estimation is obtained for the measured
coordinate:

x̂0 =

(
2N+

N
− 1

)
bD
aD
→ x0, as N →∞. (2.39)
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2.3.3 A brief discussion of the Martingale method
Based on both theoretical and experimental results the efficiency of the Martingale

method compared to other indirect state estimation techniques (Conditional histogram [15]
and Bayes approaches [15]) were discussed in [15]. According to this discussion, where
the methods were confronted with each other from several aspects, the Martingale technique
appeared to be the most efficient one.

Using computer simulations the performance of the Martingale approach during the ad-
justment of its parameters yj and D were also analyzed in [15].

A similar experiment is shown in Figure 2.1 illustrating the above mentioned unbiased-
ness, where the Mean Squared Error (MSE) values are presented in terms of consumed qubits
during two different (squares and circles) indirect measurement series carried out in a com-
puter simulation environment. The squares and the circles denote the results in case of
parameter values D = 10 and D = 100, respectively.

Figure 2.1: Mean Squared Error (MSE) values in terms of the number of consumed qubits (N ).

Finally, the potential generalization possibilities were also mentioned in [15], namely, the
idea of finding parameterizations of the indirect measurement setup, for which the technique
could be extended to measure multiple Bloch coordinates simultaneously. However, since
then no achievement has been made.
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Chapter 3

Simulation based investigation of the
extension possibilities of the Martingale
method

This chapter presents the first part of my thesis work, in which in accordance with the
aims described in Section 1.2, I investigated the generalization possibilities of the Martingale
state estimation technique to multiple dimensions using symbolic and numerical computa-
tions in the case, when there is no local time evolution in the measured system. That is, I
tried to discover whether the extension of the Martingale method is possible or not besides
the assumption that L1,S = I = L2,S , in order to make it capable of measuring multiple
coordinates of two-level quantum systems simultaneously.

During the investigation I followed two significantly different paths. In the first case I
reduced the problem to root-finding tasks, whereas the second direction aimed at answer-
ing the question of extensibility by observing the trajectories of the measured quantum bit
coordinates.

3.1 Reducing the problem to root-finding tasks
Based on the equations of Chapter 2 I implemented symbolic and numerical algorithms

in Matlab environment [6], which are capable of simulating indirect measurements being
parameterizable on a wide range.

Among others the parameterization of the implemented algorithms involves the follow-
ing:

• initial values for both the measured qubit (x1, x2, x3) and the ancilla qubit (y1, y2, y3),

• characterization of the coupling, i.e. coupling directions (c1, c2, c3) and time of com-
mon development (t),

• definition of an arbitrary linear combination of the Pauli matrices, from which the
measurement operators are computed.
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With the use of these algorithms I was able to determine an equation describing the
conditional expected values of the states of the measured quantum bits in terms of the number
of indirect measurement iterations.

Denote by x(n) = (x1(n), x2(n), x3(n)) the Bloch vector of the state of the measured
system at the beginning of iteration n in the measurement sequence. Obviously, a necessary
condition for using any type of martingale based method is to extract a martingale from the
sequence of states passed through by the measured quantum system during the measurement
process. Within the described environment the only way to do this is to properly set the
above listed parameters of the measurement setup.

By applying the algorithms I implemented the difference between the conditional ex-
pected value of the state in iteration n + 1 conditioned on the state in iteration n and
the state in iteration n for each coordinate k ∈ {1, 2, 3} in terms of the parameters
p = (y1, y2, y3, c1, c2, c3, t) can be obtained as follows:

[E(x(n+1)|x(n))−x(n)]k = fk,0(p)+fk,1(p)x1(n)+fk,2(p)x2(n)+fk,3(p)x3(n), (3.1)

where the coefficient functions {fk,i(p)}3,4k=1,i=1 are the sums of products involving trigono-
metric functions of the members of p:

f1,0(p) = −
1

2
y1 (cos(2c2t+ 2c3t)− cos(2c2t− 2c3t)) (3.2)

f1,1(p) =
1

2
(cos(2c2t+ 2c3t) + cos(2c2t− 2c3t))− 1 (3.3)

f1,2(p) =
1

2
y3 (sin(2c2t+ 2c3t)− sin(2c2t− 2c3t)) (3.4)

f1,3(p) = −
1

2
y2 (sin(2c2t+ 2c3t) + sin(2c2t− 2c3t)) (3.5)

f2,0(p) = −
1

2
y2 (cos(2c3t+ 2c1t)− cos(2c3t− 2c1t)) (3.6)

f2,1(p) = −
1

2
y3 (sin(2c3t+ 2c1t) + sin(2c3t− 2c1t)) (3.7)

f2,2(p) =
1

2
(cos(2c3t+ 2c1t) + cos(2c3t− 2c1t))− 1 (3.8)

f2,3(p) =
1

2
y1 (sin(2c3t+ 2c1t)− sin(2c3t− 2c1t)) (3.9)

f3,0(p) = −
1

2
y3 (cos(2c1t+ 2c2t)− cos(2c1t− 2c2t)) (3.10)

f3,1(p) =
1

2
y2 (sin(2c1t+ 2c2t)− sin(2c1t− 2c2t)) (3.11)

f3,2(p) = −
1

2
y1 (sin(2c1t+ 2c2t) + sin(2c1t− 2c2t)) (3.12)

f3,3(p) =
1

2
(cos(2c1t+ 2c2t) + cos(2c1t− 2c2t))− 1 (3.13)
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As it can be observed, these functions are completely independent of the measurement
operators. They depend only on the initial values of the qubits, the coupling directions and
the time of common development.

Since a martingale must be extracted in order to have the possibility to apply the mar-
tingale method to the whole quantum bit, i.e. to extend the technique to three dimensions,
according to the definition of martingales, a parameterization p of the measurement system
must be found, for which the increment presented in Eq. 3.1 is zero for each coordinate.
The expression on the right hand side of Eq. 3.1 is a linear polynomial of x(n), hence it is
zero for arbitrary state of the measured qubit if and only if all of its coefficient functions
are equal to zero. This is required for each coordinate, i.e. every coefficient function form
Eq. 3.2 to Eq. 3.13 must be zero. Thus, the problem of finding a martingale is now reduced
to root-finding tasks, which are to be solved simultaneously.

However, this problem seems to be analytically intractable. Therefore, numerical meth-
ods were involved in the investigation.

For the purpose of solving the root-finding tasks simultaneously, another trick was ap-
plied. It is easy to see, that all of the coefficient functions are zero if and only if the sum of
the absolute values of the coefficient functions (denoted by F (p)) is also equal to zero:

F (p) :=
3∑

k=1

4∑
j=1

|fk,j(p)| = 0. (3.14)

Thus, our task is to determine parameterizations p minimizing F (p).
For giving a sense of the character of function F , it is illustrated by its two-dimensional

cross-sections along different coordinates over the parameter space in Figure 3.1 and in Fig-
ure 3.2.

By executing numerical optimization algorithms on function F , those parameterizations
can be obtained easily, for which the function takes its minimum, i.e. it is equal to zero.
However, after setting up the measurement system using these parameter values, a very dis-
tressing observation can be made. Namely, in all cases the equation x(n+1) = x(n) always
hold true. That is, the measured system is not affected by the measurement at all. In turn, this
fact has the consequence that the outcome of the indirect measurement will be completely
independent of the quantum bit being estimated, i.e. no information can be extracted from
the system.

If the extension possibilities of the martingale technique to only two simultaneously es-
timated coordinates is analyzed instead of extending the method to three dimensions, unfor-
tunately, the same negative result can be observed.

Therefore, the unfavorable conclusion must be faced: if there is no local time evolution
in the measured system, the generalization possibilities of the martingale method became
strongly doubtful.
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Figure 3.1: Two-dimensional cross-sections of F along different coordinates over the parameter
space.
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Figure 3.2: Two-dimensional cross-sections of F along different coordinates over the parameter
space (continued).
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3.2 Trajectories of the measured quantum bits during the
measurement

In order to confirm the above negative results, I analyzed the trajectories of x(n) in case
of different parameterizations and initial values.

The numerical simulations showed that, except some special cases, the trajectories of
x(n) converge to particular attractor states. Each measurement outcome sequence has its own
attractor state unambiguously determined by the ancilla qubit and by the characterization
of the coupling regardless of x(0), i.e. independently of the initial state of the examined
quantum bit. Figure 3.3 illustrates this observation, where 10000 different initial points were
selected randomly from the Bloch ball based on uniform distribution, whereas the ancilla
qubit values and the couplings were kept fixed. In all cases when the same sequences of
outcomes were assumed, the sequences of the states of the measured qubits converged to
identical attractors regardless of the initial states. In Figure 3.3 the squares on the left (blue)
and on the right (red) show the locations of the attractors corresponding to all negative and
all positive outcome sequences, respectively. The square in the middle (green) denotes the
location of the attractor of the conditional expected values of the states conditioned on the
preceding states, i.e. the attractor of the process E(x(n+ 1)|x(n)).

Figure 3.3: Attractors of measurement sequences with 10000 different randomly selected initial
points from the Bloch ball.

Each sub-figure of Figure 3.4 presents the trajectories during measurement sequences
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started from a single random initial state. (The alignments of the attractors are the same as
in Figure 3.3.)

Figure 3.4: Trajectories corresponding to measurement sequences started from single random
initial states.

Every time in the exceptional special cases mentioned above, i.e. when the trajectories do
not converge to the identical attractor states, the value of exactly one coordinate does not alter
(see Figure 3.5). These are the parameterizations, for which the original one-dimensional
martingale method can be applied.

For the multi-dimensional generalization such parameterizations would be necessary, for
which the other coordinates in the trajectories of the conditional expected values of the states
conditioned on the preceding states also preserve their values. However, no such parameter-
ization has been discovered.

This fact confirms the negative results of the previous section.
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Figure 3.5: Attractors in an exceptional case.
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Chapter 4

Analytical characterization of indirect
measurement cycles of two-level
quantum systems

In the previous chapter parameterizations were searched for, for which the sequence of
the states of the measured system forms a martingale through the sequence of indirect mea-
surements. Although, such parameterizations have been found, it seemed that in these cases
the probabilities of measurement outcomes were independent of the measured system, i.e. no
state information could be extracted from it. Thus, the attempts to extend the Martingale
method have been failed so far. Moreover, the signs pointed to the impossibility of the ex-
tension.

These results motivated a deeper understanding of indirect measurement cycles of two-
level quantum systems via formal analysis. Hence the aim of this chapter is to characterize
these measurement cycles analytically while focusing on the expected value of the resulting
state of the system and to discuss the extension possibilities of the Martingale state estimation
technique on the basis of this analysis.

4.1 General case
In what follows ρS(n), ρA(n) and ρT (n) will denote the density operators of the mea-

sured, the ancilla and the composite systems at the beginning of iteration n, respectively,
whereas ρT (n)′ will be the composite state after the time evolution. Similarly, other vari-
ables with subscripts S,A and T will also correspond to the respective systems. The Bloch
vector of the measured system at the beginning of iteration n will be denoted by x(n) like in
the previous chapters.

As it was described in Subsection 2.3.1 an indirect measurement cycle contains three
phases: coupling, common time evolution and measurement of the ancilla system together
with decoupling.

The following proposition shows that the ordering between the measurement of the an-
cilla system and the decoupling is indifferent in the analysis of the expected values of the
resulting states of the measured system.
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Proposition 1. In case of arbitrary measurement operators, after an indirect measurement
cycle the state of the measured system remains the same, expectedly, as its decoupled state
after the common time evolution during the measurement cycle, i.e.

E(ρS(n+ 1)|ρS(n)) = TrA(E(ρT (n+ 1)|ρT (n))) = TrA(ρT (n)
′). (4.1)

Proof. Based on Postulate 2, Postulate 4 and Eq. 2.28 in case of coupling parameters
c1, c2, c3 and time evolution length t the composite state after time evolution in an indirect
measurement cycle is

ρT (n)
′ =

3∑
i=0

3∑
j=0

µi(c, t)µj(c, t)(L1,SσiL2,SρS(n)L
∗
2,SσjL

∗
1,S⊗L1,PσiL2,AρA(n)L

∗
2,AσjL

∗
1,A).

(4.2)
With substitutions

Ui,S := L1,SσiL2,S, (4.3)

Ui,A := L1,AσiL2,A, (4.4)

where the operators Ui,S and Ui,A are obviously unitary, the compound state after time evo-
lution reads as follows:

ρT (n)
′ =

3∑
i=0

3∑
j=0

µi(c, t)µj(c, t)(Ui,SρS(n)U
∗
j,S ⊗ Ui,AρP (n)U∗j,A). (4.5)

Then, since a measurement is applied on the ancilla system, based on Postulate 3 in case
of measurement outcome m the state becomes

Mm,TρT (n)
′M∗

m,T

Tr(Mm,TρT (n)′M∗
m,T )

=
(I⊗Mm,A)ρT (n)

′(I⊗Mm,A)

Tr((I⊗Mm,A)ρT (n)′(I⊗M∗
m,A)

=

=
3∑
i=0

3∑
j=0

µi(c, t)µj(c, t)

Tr((I⊗Mm,A)ρT (n)′(I⊗M∗
m,A))

(Ui,SρS(n)U
∗
j,S ⊗Mm,AUi,AρA(n)U

∗
j,AM

∗
m,A).

(4.6)
Due to the bilinearity of the tensor product the conditional expected value of the new

compound state is

E(ρT (n+ 1)|ρT (n)) =
∑
m

Tr(Mm,TρT (n)
′M∗

m,T )
Mm,TρT (n)

′M∗
m,T

Tr(Mm,TρT (n)′M∗
m,T )

=

=
3∑
i=0

3∑
j=0

µi(c, t)µj(c, t)

(
Ui,SρS(n)U

∗
j,S ⊗

∑
m

Mm,AUi,AρA(n)U
∗
j,AM

∗
m,A

)
. (4.7)

Finally, the conditional expected value of the state of the measured system after one
indirect measurement cycle is obtained by applying the partial trace operator (and using its
linearity as well as Eq. 2.20):

TrA(E(ρT (n)′|ρT (n))) =
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=
3∑
i=0

3∑
j=0

µi(c, t)µj(c, t)

(
Ui,SρS(n)U

∗
j,S ⊗

∑
m

Tr(Mm,AUi,AρA(n)U
∗
j,AM

∗
m,A)

)
, (4.8)

where using the properties of the trace operator and considering that
∑

mM
∗
m,AMm,A = I

holds: ∑
m

Tr(Mm,AUi,AρA(n)U
∗
j,AM

∗
m,A) =

= Tr

((∑
m

M∗
m,AMm,A

)
Ui,AρA(n)U

∗
j,A

)
= Tr(Ui,AρA(n)U

∗
j,A), (4.9)

and therefore:
E(ρS(n+ 1)|ρS(n)) = TrA(E(ρT (n+ 1)|ρT (n))) =

=
3∑
i=0

3∑
j=0

µi(c, t)µj(c, t)Ui,SρS(n)U
∗
j,S Tr(Ui,AρA(n)U

∗
j,A) = TrA(ρT (n)

′). (4.10)

This result agrees with the observations of Section 3.1, namely, the coefficient functions
in Eq. 3.2 – Eq. 3.13 were completely independent of the measurement operators.

On the basis of the previous proposition the Bloch coordinates of the conditional expected
value can be expressed as follows.

Lemma 1. Bloch coordinate k ∈ {1, 2, 3} of the conditional expected value of the state of
the measured system after an indirect measurement cycle is

E(ρS(n+ 1)|ρS(n))k =
3∑
l=0

xl(n)ϕl,k, (4.11)

where

ϕl,k :=
1

2

3∑
i=0

3∑
j=0

µi(c, t)µj(c, t) Tr(Ui,AρA(n)U
∗
j,A) Tr

(
L1,SσiL2,SσlL

∗
2,SσjL

∗
1,Sσk

)
.

(4.12)

Proof. Using Eq. 4.10 and Eq. 2.7, moreover expressing ρS(n) with Bloch coordinates, one
obtains for Bloch coordinate k ∈ {1, 2, 3} of the conditional expected value that

E(ρS(n+ 1)|ρS(n))k = Tr

(
3∑
i=0

3∑
j=0

µi(t)µj(c, t) Tr(Ui,AρA(n)U
∗
j,A)Ui,SρS(n)U

∗
j,Sσk

)
=

=
3∑
i=0

3∑
j=0

µi(t)µj(t) Tr(Ui,AρA(n)U
∗
j,A) Tr

(
Ui,S

1

2

(
I+

3∑
l=1

xl(n)σl

)
U∗j,Sσk

)
. (4.13)

With x0(n) :≡ 1 and σ0 = I this reads as

E(ρS(n+ 1)|ρS(n))k =
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=
3∑
l=0

xl(n)
1

2

3∑
i=0

3∑
j=0

µi(c, t)µj(c, t) Tr(Ui,AρA(n)U
∗
j,A) Tr(L1,SσiL2,SσlL

∗
2,SσjL

∗
1,Sσk).

(4.14)

The following lemma highlights the dependence between the probability of measurement
outcome m and the state of the measured system.

Lemma 2. During indirect measurement iteration n the probability of measurement outcome
m is

Tr(Mm,TρT (n)
′M∗

m,T ) =
3∑
i=0

|µi(c, t)|2tri,i+

+2Re{µ0(c, t)µ1(c, t)x1,L2(n)tr0,1 − iµ2(c, t)µ3(c, t)x1,L2(n)tr2,3+

+µ0(c, t)µ2(c, t)x2,L2(n)tr0,2 + iµ1(c, t)µ3(c, t)x2,L2(n)tr0,1)+

+ µ0(c, t)µ3(c, t)x3,L2(n)tr0,3 − iµ1(c, t)µ2(c, t)x3,L2(n)tr2,3}, (4.15)

where
tri,j := Tr(Mm,AUi,AρA(n)U

∗
j,AM

∗
m,A), (4.16)

Re{a} denotes the real part of the complex number a ∈ C and the variable xk,L2(n) (k ∈
{1, 2, 3}) is the Bloch coordinate k of the state L2,SρS(n)L

∗
2,S .

Proof. Considering the linearity of the trace operator and applying the identity Tr(A⊗B) =
Tr(A) · Tr(B), the probability of measurement outcome m is

Tr(Mm,TρT (n)
′M∗

m,T ) =

=
3∑
i=0

3∑
j=0

µi(c, t)µj(c, t) Tr(Ui,SρS(n)U
∗
j,S ⊗Mm,AUi,AρA(n)U

∗
j,AM

∗
m,A) =

=
3∑
i=0

3∑
j=0

µi(c, t)µj(c, t) Tr(Ui,SρS(n)U
∗
j,S) Tr(Mm,AUi,AρA(n)U

∗
j,AM

∗
m,A). (4.17)

Since L1,S is unitary, based on Eq. 4.3:

Tr(Ui,SρS(n)U
∗
j,S) = Tr(L∗1,SL1,SσiL2,SρS(n)L

∗
2,Sσj) = Tr(L2,SρS(n)L

∗
2,Sσjσi). (4.18)

With the substitution of Eq. 4.16, applying Table 2.1 and Eq. 2.7, furthermore using that
for complex numbers a1, a2 ∈ C : a1a2 + a1a2 = 2Re{a1a2}, Eq. 4.15 follows.
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4.2 Special case: without local time evolution in the mea-
sured system

4.2.1 Determination of the variables ϕl,l (l ∈ {0, 1, 2, 3})
If there is no local time evolution in the measured system, i.e. L1,S = I = L2,S , the values

of ϕl,k(l, k ∈ {0, 1, 2, 3}) are

ϕl,k =
1

2

3∑
i=0

3∑
j=0

µi(c, t)µj(c, t) Tr(Ui,AρA(n)U
∗
j,A) Tr(σiσlσjσk) (4.19)

Then, for the values of ϕl,l(l ∈ {0, 1, 2, 3}) the following lemma holds.

Lemma 3. The values of ϕl,l(l ∈ {0, 1, 2, 3}) are

ϕ0,0 = |µ0(c, t)|2 + |µ1(c, t)|2 + |µ2(c, t)|2 + |µ3(c, t)|2, (4.20)

ϕ1,1 = |µ0(c, t)|2 + |µ1(c, t)|2 − |µ2(c, t)|2 − |µ3(c, t)|2, (4.21)

ϕ2,2 = |µ0(c, t)|2 − |µ1(c, t)|2 + |µ2(c, t)|2 − |µ3(c, t)|2, (4.22)

ϕ3,3 = |µ0(c, t)|2 − |µ1(c, t)|2 − |µ2(c, t)|2 + |µ3(c, t)|2. (4.23)

Proof. From Eq. 4.19 for all l ∈ {0, 1, 2, 3}

ϕl,l =
1

2

3∑
i=0

|µi(c, t)|2Tr(Ui,AρA(n)U∗i,A) Tr(σiσlσjσl), (4.24)

where

Tr(Ui,AρA(n)U
∗
i,A) = Tr(U∗i,AUi,AρA(n)) = Tr(I ρA(n)) = Tr(ρA(n)) = 1, (4.25)

because density operators are trace-one matrices.
Since the Pauli matrices are closed under matrix multiplication up to factors ±1 and ±i,

the product σiσlσjσl = (σiσl)(σjσl) is not traceless if and only if it is equal to ± I or ±i I.
This can occur if and only if σiσl = ±σjσl or σiσl = ±iσjσl (see Table 2.1). By multiplying
with σl from the right, σi = ±σj and σi = ±iσj can be obtained, from which σi = σj and
thus i = j follows. Then, for the trace of the product:

Tr(σiσlσjσl) =

{
Tr((σiσl)

2) = ±2, if i = j
0, if i 6= j

(4.26)

Applying these considerations:

ϕl,l =
3∑
i=0

±µi(c, t)µi(c, t), (4.27)

where the appropriate signs can be read out from Table 2.1 resulting in the expressions
formulated in Eq. 4.20 – Eq. 4.23.
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Notice that since ‘Bloch coordinate 0’ is always 1, i.e x0(n) ≡ 1 as well as E(ρS(n +
1)|ρS(n))k ≡ 1, whereas the other (‘real’) Bloch coordinates can take arbitrary values from
the interval [−1, 1], considering Eq. 4.11 it follows that

ϕl,0 =

{
1, if l = 0
0, if l 6= 0

(4.28)

(By the way, ϕ0,0 also follows from Eq. 2.24 – Eq. 2.27 using the trigonometric identity
sin2 α + cos2 α ≡ 1 multiple times.)

Although, from Eq. 2.24 – Eq. 2.27, Table 2.1, Eq. 4.19 and using trigonometric identities
it can also be shown that {ϕl,k}3,4l=1,k=1 = {fk,i(p)}

3,4
k=1,i=1 holds true (see Eq. 3.2 – Eq. 3.13

in Section 3.1), since this fact is irrelevant from the point of view of the aim of the present
analysis, this equivalence will not be justified.

4.2.2 Martingale case
Based on the results described above the following theorem shows that without local

time evolution no extension of the Martingale method may exist estimating a whole two-
level quantum system, i.e all of its coordinates simultaneously.

Theorem 1. If the sequence of states of the measured system {ρS(n)} form a martingale
and there is no local time evolution in the measured system, then the probability of every
measurement outcome is independent of the state of the measured system, consequently, the
state of the system cannot be estimated by indirect measurements.

Proof. Assume that the sequence of states of the measured system form a martingale through
the measurement sequence. Then, ∀k ∈ {0, 1, 2, 3} : E(ρS(n + 1)|ρS(n))k = xk(n) must
hold, and thus from Eq. 4.11 of Lemma 1 it follows that ϕl,k is the Kronecker-delta, that is

ϕl,k = δl,k =

{
1, if l = k
0, if l 6= k

(4.29)

Applying Eq. 4.20 – Eq. 4.23 of Lemma 3 this implies the following system of equations:

1 = |µ0(c, t)|2 + |µ1(c, t)|2 + |µ2(c, t)|2 + |µ3(c, t)|2 (4.30)

1 = |µ0(c, t)|2 + |µ1(c, t)|2 − |µ2(c, t)|2 − |µ3(c, t)|2 (4.31)

1 = |µ0(c, t)|2 − |µ1(c, t)|2 + |µ2(c, t)|2 − |µ3(c, t)|2 (4.32)

1 = |µ0(c, t)|2 − |µ1(c, t)|2 − |µ2(c, t)|2 + |µ3(c, t)|2 (4.33)

The terms |µi(c, t)|2 (i ∈ {0, 1, 2, 3}) are obviously nonnegative.
After adding Eq. 4.31, Eq. 4.32 and Eq. 4.33 to each other pairwise, dividing the sums

by 2 and rearranging the equations, one can obtain that

|µ0(c, t)|2 = 1 + |µ1(c, t)|2 = 1 + |µ2(c, t)|2 = 1 + |µ3(c, t)|2. (4.34)
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However, from Eq. 4.30 inequality |µ0(c, t)|2 ≤ 1 follows, hence

|µ0(c, t)|2 = 1, |µ1(c, t)|2 = 0, |µ2(c, t)|2 = 0, |µ3(c, t)|2 = 0, (4.35)

implying that
µ1(c, t) = 0, µ2(c, t) = 0, µ3(c, t) = 0. (4.36)

Confronting this with Eq. 4.15 of Lemma 2, the probability of arbitrary outcome m
becomes

Tr(Mm,TρT (n)
′M∗

m,T ) =
3∑
i=0

|µi(c, t)|2tri,i, (4.37)

which is completely independent of the measured system, agreeing with the results of Sec-
tion 3.1.

Moreover, let us see the case, when only two coordinates are tried to be estimated simul-
taneously.

Theorem 2. If within the sequence of states of the measured system {ρS(n)} more than
one coordinates form a martingale and there is no local time evolution in the measured
system, then the probability of every measurement outcome is independent of the state of
the measured system, consequently, the state of the system cannot be estimated by indirect
measurements.

Proof. Assume that within the sequence of states of the measured system more than one
coordinates form a martingale through the measurement sequence. Then, in the proof of
Theorem 1 besides Eq. 4.30 (which is always true) at least two additional equations hold out
of Eq. 4.31, Eq. 4.32 and Eq. 4.33.

After adding these two equations to each other, dividing the sum by 2 and rearranging
the equation, one can obtain that

|µ0(c, t)|2 = 1 + |µi(c, t)|2 for at least one i ∈ {1, 2, 3}. (4.38)

However, as |µ0(c, t)|2 ≤ 1 holds, |µ0(c, t)|2 must be equal to 1. Consequently, due to
Eq. 4.30, Eq. 4.35 and thus Eq. 4.36 as well as Eq. 4.37 hold true again, implying that without
local time evolution no extension of the Martingale method may exist estimating even two
coordinates of a two-level quantum system.

Therefore, the conjecture formulated in Chapter 3 is true, that is, if there is no local time
evolution in the measured system, the Martingale method cannot be extended to multiple
dimensions.
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Chapter 5

Conclusions

My thesis aimed to extend the Martingale quantum state estimation method (see Chap-
ter 2) to multiple dimensions, i.e. to make it capable of estimating multiple coordinates of
two level quantum systems simultaneously.

In the first half of my thesis work (see Chapter 3), as the first step of this task I searched
for appropriate parameterizations for the indirect measurement system, for which the se-
quence of the states of the measured system forms a martingale through the sequence of
indirect measurements. Since there are nonlinear terms in the dynamics of coupled quantum
systems, for this purpose I implemented a simulation environment on a computer (in Mat-
lab) using symbolic and numerical computations. Then I reduced the problem to root finding
tasks and solved it in the established environment.

Besides the resulting parameterizations, however, no information can be extracted from
the measured system. I made similar observations also in case of two coordinates instead
of three. These led to the conjecture that the extension of the Martingale technique is not
possible to multiple dimensions.

I reinforced this conjecture by another series of simulations, where I monitored the tra-
jectories of the states of the measured systems and I noticed that the conditional expected
values of the states could not be fixed in general cases.

Due to these negative results, in the second half of my work (see Chapter 4) I character-
ized the measurement cycles of indirectly measured two-level quantum systems deep enough
to discover crucial algebraic relationships, based on which I was able to prove the conjecture
that the Martingale quantum state estimation method is inextensible for multiple dimensions
(if there is no time evolution in the measured system), indeed.

My thesis work can be summarized in a nutshell in the following sentence:
“My task was to extend the Martingale state estimation method to multiple dimensions in the
case, when there is no local time evolution in the measured system, which task I conjectured
to be impossible, then I proved this conjecture to be true.”

The new research results I achieved may be beneficial in the intensively studied field
of quantum state estimation for researchers interested in developing and improving state
estimation techniques.

Although, my results are complete and stand-alone, obviously there are a number of
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possibilities to continue my research.
A natural possibility is to investigate the case when during the measurement process local

time evolution is allowed within the measured system.
Moreover, an obvious future aim may be the analysis of other quantum state estimation

techniques from the point of view of extensibility to multiple dimensions.
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