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three parameters is identi�able. Based on the results of the identi�abilityanalysis, a novel optimization-based identi�
ation method is proposed anddemonstrated on in sili
o data. The proposed method is based on the de
om-position of the parameter estimation problem into two parts using multiplevoltage step tra
es. The results of the arti
le are used to formulate expli
it
riteria for the design of voltage 
lamp proto
ols.Keywords:Dynami
al modeling, System Identi�
ation, Single Cell Neuronal Models,Computer Algebra, Optimization1. Introdu
tionThe HH (Hodgkin-Huxley) modelling formalism of membrane 
urrentsand 
ell ele
trophysiology is one of the most widely used framework for thepurpose of modelling ex
itable 
ells [1℄. HH models, that are essentially non-linear ele
tri
al 
ir
uit models, are 
omposed of parallel voltage dependent(and possibly voltage independent) 
ondu
tan
es, that 
orrespond to vari-ous types of membrane 
urrents. The dynami
al des
riptions of neuronalbehavior, ranging from the fundamental theoreti
al prin
iples [2, 3, 4℄ to thewide range of appli
ations with spe
ial fo
us, are predominantly based onthis model 
lass.Be
ause of the theoreti
al and pra
ti
al importan
e of HH models, a largenumber of papers are devoted to their parameter estimation under various
onditions, applying di�erent approa
hes and estimation te
hniques. How-ever, the fundamental question, whether it is at least theoreti
ally possibleto determine all of the model parameters from the measured data - that is,2



the question of theoreti
al identi�ability - has not even been raised for HHmodels.The 
on
ept and importan
e of identi�ability. On
e the model stru
ture is�xed (see later Eqs. (2)-(7) in our 
ase), one 
an perform parameter estima-tion, the quality of whi
h is 
ru
ial in subsequent usability of the obtainedmodel [5℄. The stru
tural identi�ability properties of the system des
ribewhether there is a theoreti
al possibility for the unique determination ofsystem parameters from appropriate input-output measurements or not. Itis important to emphasize, that identi�ability is a property of the modelstru
ture, the analysis of whi
h should ideally pre
ede any model parameterestimation. Basi
 early referen
es for studying identi�ability of dynami
alsystems are [6, 7℄. It has been 
learly shown in the 
ase of pro
ess systems,that prior stru
tural identi�ability analysis is an important step in the solu-tion of model 
alibration problems [8℄. The paper [9℄ solves the problem ofstru
tural parameter identi�ability for 
hemi
al rea
tion network models.The study and development of di�erential algebra methods, whi
h areused for identi�ability analysis, 
ontributed to the better understanding ofimportant system theoreti
 problems [10, 11℄. The most important de�ni-tions and 
onditions of stru
tural identi�ability for general nonlinear systemswere presented in [12℄ in a very 
lear way. Further developments in the �eldin
lude the identi�ability 
onditions of rational fun
tion state-spa
e models[13℄, and the possible e�e
t of spe
ial initial 
onditions on identi�ability [14℄.The importan
e of identi�ability has been also stressed in the 
ontext ofbiologi
al models [15, 16, 17, 18℄. However, many modeling and parameterestimation studies in 
omputational biology still 
ontinue to ignore this key3



property.Parameter estimation and identi�ability-related results of HH models. Sev-eral arti
les have been published whi
h are fo
using on parameter estima-tion problem in the 
ase of HH based models under various assumptions.Most of the published work [19, 20, 21, 22, 23, 24, 25℄ is 
onsidering 
urrent
lamp setup, when the voltage tra
es are measured in the 
ase of known in-je
ted 
urrents or unknown synapti
 
urrents. In addition, a signi�
ant partof literature data assumes prior knowledge regarding the 
hannel kineti
s[19, 22, 21, 25℄. The arti
le [20℄ provides a survey of automated parameter-sear
h methods for 
ompartmental neural models, regarding also the param-eters of a
tivation and ina
tivation 
urves. The arti
les [26, 27, 28, 29, 30℄
onsider voltage 
lamp s
enarios (in this 
ase the voltage is �xed, and trans-membrane 
urrent tra
es are measured). In [29, 30, 31℄ a 
omputationallye�e
tive global sear
h method, di�erential evolution is applied.Although the expli
it identi�ability properties are not addressed in theabove papers, they dis
uss several issues, whi
h are related to identi�ability.The question whether the parti
ular parameter values sele
ted are the onlyviable parameters or just one of several possible solutions, has been addressedin [19℄. The paper [32℄ also dis
usses emerging identi�ability problems inthe 
ase of HH based neuronal models. In this arti
le the authors derive 20di�erent 
omputational models for the 
erebellar Purkinje 
ell, whi
h produ
every similar outputs to 
urrent inje
tions, and analyze their geometry inthe parameter spa
e. The arti
le [22℄ 
onsiders an estimation problem ofa multi
ompartmental model based on voltage tra
es, and shows that if weassume the knowledge of 
hannel kineti
s, the 
hannel densities (in addition4



intra
ompartmental 
ondu
tan
es and overall strength of the presynapti
input) 
an be determined. Furthermore, the arti
le shows that the proposedmethod leads to algorithms that are guaranteed to 
onverge to the uniqueoptimum. We will see later that identi�ability results des
ribed in this arti
leregarding the voltage 
lamp 
ase support this observation (if 
hannel kineti
sare known, the maximal 
ondu
tan
e 
an be uniquely determined).Regarding the results 
orresponding to voltage 
lamp setup, the arti
les[26, 28℄ realized the weaknesses of the 
onventional estimation algorithms,whi
h originate from the assumption of separated a
tivation and ina
tiva-tion pro
esses, and provided improved methods for the estimation of HHmodels. Lee et al. in [28℄ proposed a new numeri
al approa
h to interpretvoltage 
lamp experiments. Moreover, it is 
laimed in [28℄, that all 
hannelparameters 
an be determined from a single appropriate voltage step, butthis statement has not been proven rigorously for the whole meaningful pa-rameter spa
e. In addition, the numeri
al method proposed in [28℄ is basedon the determination of the time and value of the maximal 
urrent duringthe voltage step measurement, but, as we will also show, a lo
al maximumdoes not ne
essary appear in every 
ase.Aims. Be
ause of the la
k of identi�ability results even in the simplest pos-sible HH model with just a single ion 
hannel, the primary aim of this paperis to 
arry out a rigorous identi�ability analysis in this simplest 
ase undervoltage 
lamp measurement 
onditions. We want to show that identi�abilityproblems may arise even in the very simple 
ase of one HH 
hannel withunknown kineti
s and a single voltage step measurement proto
ol.An additional goal of the paper is to propose a well grounded parameter5



estimation method for the maximal 
ondu
tan
e and the kineti
 parametersof the 
hannel based on the results of identi�ability analysis that is able tohandle the possibly appearing identi�ability problems in the analyzed 
ase.2. Materials and MethodsIn this se
tion the model framework, the assumed measurement proto
ol,and the methods applied for identi�ability analysis are des
ribed.2.1. Ion 
hannel modelWe 
onsider a simple hypotheti
al ion 
hannel with one a
tivation (m)and one ina
tivation variable (h). A

ording to the most widespread notationin 
omputational neuros
ien
e (see for eg. [4℄), the 
urrent, whi
h is themeasured variable, is simply des
ribed by
I = gmpmhph(V − E) (1)where V [mV℄ is the voltage, g [nS℄ is the maximal 
ondu
tan
e, and E[mV℄ is the reversal potential of the 
orresponding ion. The positive integerexponents pm and ph 
orrespond to the number of independent subunitsof the voltage 
hannel protein. We will assume the simplest 
ase in our
al
ulations when pm = ph = 1. If pm and ph 6= 1, but their values areknown, the estimation algorithm proposed in se
tion 4 may be used with the
orresponding straightforward modi�
ation.Both m and h are state variables in the following nonlinear state-spa
e
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model
dm

dt
=
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τm(V )
(2)
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(
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=
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))−1 (7)where V1/2m, km, V1/2h, and kh are the parameters of the Boltzmann fun
tionswhi
h des
ribe the steady state a
tivation and ina
tivation values cbm, cam,
VMaxm, σm, cbh, cah, VMaxh and σh denote the parameters of Gauss-fun
tionswhi
h des
ribe the voltage dependent time-
onstants 1.As des
ribed in se
tion 1, in this paper we will 
onsider voltage 
lamp1We have to note that the approximation of the steady state values with Boltzmannfun
tions is not always realisti
, as it is des
ribed in [26℄. However, in the rest of this paperwe assume that this assumption holds. It 
an be said that the use of Boltzmann-typesigmoid fun
tions for the des
ription of steady-state values in the literature is widespread,but not ex
lusive (see e.g. [33℄). The des
ription of the voltage dependent time 
onstantsin the literature is more diverse. In fa
t, the wide set of possible time 
onstant 
urves
orresponding to various rate 
onstant fun
tions is des
ribed in [26℄. The applied Gauss-fun
tions are an approximation of the skewed bell shape 
urves, resulting from the rate
onstant based des
ription, where the rate 
onstants depend exponentially on the voltage(see [26℄). 7



measurement 
onditions, when the voltage is determined and the transmem-brane 
urrents are measured.We have to note that be
ause of the bifur
ation stru
ture of HH models,small estimation errors of ion 
hannel properties based on the voltage 
lampsetup may imply signi�
antly di�erent behavior at the membrane voltagelevel, if the voltage is not �xed. However the des
ription of membrane voltagedynami
s is not in the s
ope of this paper.2.2. Voltage step proto
olAn important version of the voltage 
lamp method is when the voltage,whi
h is in this 
ase the manipulable input (u) of the system, is held pie
e-wise 
onstant (V (t) = u(t) = Vk for tk ≤ t < tk+1, k = 1, . . . , N). Thus,during ea
h interval, the values of m∞, h∞, τm and τh 
an be 
onsideredas time-invariant parameters in addition to g and E. This implies that thenon-polynomial nonlinearities of Boltzmann and Gauss fun
tions are natu-rally eliminated from the equations, and the model will fall into the 
lass ofpolynomial systems, whi
h makes the appli
ation of e�e
tive 
omputer alge-bra based software tools (e.g. DAISY [34℄) possible for identi�ability testing.Moreover, we also point out that this way we also negle
t the prior knowledgethat the a
tivation and ina
tivation fun
tions are des
ribed by Boltzmannand Gauss fun
tions.We will denote the voltage independent nature of the above parametersshortly by suppressing the V argument, i.e. m∞(V ) = m∞, τm(V ) = τm,
h∞(V ) = h∞ and τh(V ) = τh, with V = V0. In this 
ase, Eqs. (1-7) aresimpli�ed as follows:

I = gmh(V0 − E) = gmh(u− E) (8)8



y = I, u = V0 = const.

dm

dt
=

m∞ −m

τm
,

dh

dt
=

h∞ − h

τh
(9)where the model parameters are g, E,m∞, τm, h∞ and τh.2.3. Stru
tural identi�ability notions and toolsIn general let us 
onsider the following 
lass of models

ẋ = f(x, u, θ), x(0) = x0 (10)
y = h(x, u, θ)where x ∈ R

n is the state ve
tor, y ∈ R
m is the output, u ∈ R

k is the input,and θ ∈ R
d denotes the parameter ve
tor. We assume that the fun
tions fand h are polynomial in the variables x, u and θ. We remark that majority ofnonlinear state-spa
e models with smooth right-hand sides 
an also be em-bedded into the above polynomial model form (10) on the pri
e of in
reasingthe state spa
e dimension [35℄.2.3.1. The notions of stru
tural and pra
ti
al identi�abilityThe problem statement of stru
tural identi�ability analysis is to deter-mine, whether there is a theoreti
al possibility for the unique determinationof model parameters from measurement data. Shortly speaking, global stru
-tural identi�ability means that

y(t|θ′) ≡ y(t|θ′′) ⇒ θ′ = θ′′ (11)where
y(t|θ) = h(x(t, θ), u(t), θ) (12)9



and x(t, θ) denotes the solution of (10) with parameter ve
tor θ. This meansthat if the system outputs are identi
al, then the underlying parameters arene
essarily the same: this is a model property, e.g. the property of (10). A
-
ording to (11), a stru
turally non-identi�able model may produ
e exa
tlythe same observed output with di�erent parametrizations. This is 
learly afundamental obsta
le of determining the true model parameters from mea-surements irrespe
tively of the applied estimation method (however sophis-ti
ated it is), even if the sele
ted model stru
ture is 
onsidered to be 
orre
t.The la
k of stru
tural identi�ability 
an usually be �xed by in
orporatingmore prior information into the modeling pro
ess e.g. in the form of modelparameter 
onstraints, by 
hanging the input/output 
on�guration, or bymodifying the internal model stru
ture in 
ase of need. If (11) is valid onlyin a subset of the studied parameter spa
e, then the model is 
alled lo
allystru
turally identi�able.Even if the 
onditions of stru
tural identi�ability are ful�lled, we are oftenfa
ed with serious 
omputational di�
ulties during the implementation of thea
tual parameter estimation pro
edure. These problems are usually referredto as pra
ti
al identi�ability problems, and they are most often 
aused by thes
ar
ity and/or the noisiness of measurement data, by low output sensitivityto 
ertain parameters, or simply by inappropriately designed input signals.Beside more advan
ed measurement te
hnology, the results in this 
ase 
anoften be greatly improved using optimal experiment design te
hniques [16℄.2.3.2. Global stru
tural identi�ability analysis using di�erential algebraThe following notations, de�nitions and 
onditions are mostly taken from[12℄. Let us denote a di�erential polynomial F (u, u̇, . . . , y, ẏ, . . . ) by F (u, y; p)10



where p = d
dt
.The stru
ture (10) is globally identi�able if and only if by di�erentiating,adding, s
aling and multiplying the equations the model 
an be rearrangedto the parameter-by-parameter linear regression form:

Pi(u, y; p)θi −Qi(u, y; p) = 0 i = 1, . . . , d (13)It is visible from (13) that θi 
an be expressed as
θi =

Qi(u, y; p)

Pi(u, y; p)
i = 1, . . . , d (14)if Pis are non-degenerate. The non-degenerate 
ondition 
an be fostered byensuring that the inputs ex
ite the system dynami
s su�
iently so that theparameter ve
tor 
an be determined in a numeri
ally well-
onditioned way.2.3.3. Stru
tural identi�ability analysis using Taylor series expansion of theoutputConsider again the nonlinear model stru
ture in (10). The well-knownpaper [36℄ gives the following 
ondition for global stru
tural identi�abilitybased on the Taylor series expansion of the system output. Let

ck(θ) = lim
t→0+

dk

dtk
y(t, θ) (15)Then a su�
ient 
ondition of global stru
tural identi�ability is

ck(θ1) = ck(θ2), k = 0, 1, . . . , kmax, =⇒ θ1 = θ2 (16)where kmax is a positive integer (small enough for the symboli
 
omputa-tions to remain tra
table). It is important to remark that the la
k of globalsolvability of ck for the system parameters in the 
ase of a given kmax value11



is generally not enough for proving non-identi�ability, sin
e the in
lusion ofhigher derivatives (new ck-s) may result in the solvability of the 
orrespond-ing system of nonlinear equations.3. Identi�ability ResultsIn this se
tion the obtained results 
orresponding to stru
tural identi-�ability properties of ion 
hannel models under voltage step measurement
onditions, and the proposed parameter estimation method based thereonare des
ribed.3.1. Identi�ability analysis using di�erential algebraThe identi�ability analysis des
ribed in se
tion 2.3.2 requires the elim-ination of the di�erential (state) variables m and h from the model Eqs.(8)-(9) and then �nding the parameter groups that 
an be determined fromthe resulting equations. For 
onvenien
e, let us introdu
e the followingparametrization:
x1 = m, x2 = h

p1 =
1

τm
, p2 = m∞, p3 =

1

τh
(17)

p4 = h∞, p5 = g, k1 = u− EIt 
an be seen that the physi
al system parameters are trivially 
omputable,if p1, . . . , p5 are given. In general, we assume that k1 is known (this meansthat we assume known reversal potential), and we are sear
hing for the largestsubset in {p1, . . . , p5} that is globally identi�able. Using Eq. (17), the state
12



and output equations of the simple model 
an be written as
ẋ1 = p1(p2 − x1), ẋ2 = p3(p4 − x2) (18)
y = k1p5x1x2 (19)To get a pure input-output relation, we have to eliminate the state variablesfrom Eqs. (18)-(19). For this, the time-derivative of y is taken that gives

ẏ = (−p1 − p3)y + k1p5p3p4x1 + k1p5p1p2x2. (20)By taking the se
ond derivative of y with respe
t to time, the followingequation is obtained
ÿ = (−p1 − p3)ẏ − k1p5p1p3p4x1 − k1p1p1p2p3x2

+ 2k1p1p2p3p4p5 (21)It 
an be observed that both Eq. (20) and Eq. (21) depend linearly on
x1 and x2, therefore the state variables 
an be expressed from them andsubstituted to the original output equation (19) in a straightforward way.This property is often 
alled algebrai
 observability [10, 34℄. The expressionand substitution results in the following lengthy input-output relation

0 = (−a0 − a1a5 − a1a3)y − (a1a4 − a1a2)ẏ

− 2a1ÿ + (a2a5 + a3a4)yẏ + (a2 + a4)ẏÿ + (a3 + a5)yÿ

+ a3a5y
2 + a2a4ẏ

2 + ÿ2 + a21 (22)where a0, . . . , a5 are de�ned as
a0 = (p23 − p1p3)(k1p

2
1p2 − k1p1p2p3)

2p4p5,

a1 = 2k1p1p2p3p4p5, a2 = 2p1 + p3

a3 = p21 + p1p3, a4 = p1 + 2p3, a5 = p1p3 + p23 (23)13



The 
oe�
ients in Eq. (22) de�ne the following set of equations for the nine
oe�
ients ci, i = 1, ..., 9

−a0 − a1a5 − a1a3 = c1 (24)
−a1a4 − a1a2 = c2 (25)

−2a1 = c3 (26)
a2a5 + a3a4 = c4 (27)

a2 + a4 = c5 (28)
a3 + a5 = c6 (29)

a3a5 = c7 (30)
a2a4 = c8 (31)
a21 = c9 (32)The solvability of Eqs. (24)-(32) with respe
t to the parameters p1, . . . , p5
an be 
he
ked by e.g. Bu
hberger's algorithm (see, e.g. [14℄). Using thismethod, the following parameter-pairs 
an be shown to be globally iden-ti�able: (p1, p2), (p1, p4), (p1, p5), (p2, p3), (p3, p4), (p3, p5). The followingparameter 
ombinations turned out to be lo
ally identi�able (with 2 possiblesolutions for ea
h): (p1, p3), (p1, p2, p3), (p1, p3, p4), (p1, p3, p5).For 
omparison, the identi�ability analysis te
hnique based on the Taylorseries expansion of the output has been applied, too, that is des
ribed in thefollowing subse
tion.3.2. Stru
tural identi�ability analysis using the Taylor series methodTo keep the original physi
al parameters (or their simple transforma-tions), let us use the previously de�ned parametrization (17) of the ion 
han-14



nel model.The solution of the state equations (18) is easy to give with zero initial
ondition:
x1(t) = −p2e

−p1t + p2 (33)
x2(t) = −p4e

−p3t + p4 (34)From this, the output and its su

essive derivatives are given by
y(t) = k1p2p4p5(1 + e−(p1+p3)t − e−p1t − e−p3t)

ẏ(t) = k1p2p4p5(−(p1 + p3)e
−(p1+p3)t + p1e

−p1t + p3e
−p3t)

. . . (35)
y(k)(t) = k1p2p4p5((−1)k(p1 + p3)

ke−(p1+p3)t+

+ (−1)k+1(pk1e
−p1t + pk3e

−p3t)), k ≥ 1.From Eq. (35), the 
oe�
ients ck(θ) 
an be 
omputed as
c0(θ) = 0

. . . (36)
ck(θ) = k1p2p4p5((−1)k(p1 + p3)

k+

+ (−1)k+1(pk1 + pk3)), k ≥ 1.By the symboli
 solution of (36), the following parameter pairs were foundto be globally identi�able: (p1, p5), (p1, p2), (p3, p2), (p3, p5), (p1, p4), (p3, p4).The pair (p1, p3) was found to be lo
ally identi�able with 2 possible solutionsas well as the triplets (p1, p3, p5), (p1, p3, p4), (p1, p3, p2).3.3. Dis
ussion of identi�ability resultsFirst we have to emphasize again, that the determination of the identi-�ability properties of a model is an important model-analysis result, whi
h15



should pre
ede the parameter estimation in ideal 
ase. If identi�ability prob-lems arise in a model with an assumed input-output 
on�guration, this willlead to the la
k of unique global extremum regarding the optimization prob-lem 
orresponding to parameter estimation. In this 
ase, the parameterestimation pro
ess either has to be 
ompleted with additional measurements
orresponding to di�erent input-output 
on�gurations (regarding neuronalmodels, one may e.g. 
onsider using both voltage 
lamp and 
urrent 
lampdata), or reinterpretation of the measurement results is needed, taking intoa

ount additional assumptions regarding model properties (see later in sub-se
tion 4).Comparing the results in sub-se
tions 3.1 and 3.2 above one 
an observe,that the two methods gave exa
tly the same globally and lo
ally identi�-able parameter 
ombinations. We remark that the ne
essary 
omputationsfor both methods were performed using the freely available Sage symboli

omputation software environment (see. e.g. [37℄, [38℄).The maximal number of identi�able parameters (i.e. the limits of stru
-tural identi�ability) in the 
ase of a single voltage step measurement werewell-observable from the results of the di�erential algebra method. Moreover,it is visible from Eq. (22) that this method (if su

essful) �nally gives us su
ha dynami
al des
ription that is linear in the transformed model parameters(i.e. a regression form model). This theoreti
ally allows us to 
onstru
tsu
h an obje
tive fun
tion for the parameter estimation that is 
onvex in thetransformed parameters (e.g. su
h a one that is a quadrati
 fun
tion of thepredi
tion error). However, it is often not pra
ti
ally feasible to 
ompute therequired higher derivatives of the measured system output.16



On the other hand, the smaller set of nonlinear equations in the 
ase ofthe Taylor series method was mu
h more easily tra
table with symboli
alsoftware. Furthermore, it 
an be seen from the 
losed form of Eqs. (36) thatneither (p2, p4, p5), nor any pair from these three parameters 
an be globallyidenti�able.To 
he
k and support our former 
al
ulations, we also used the di�erentialalgebra software DAISY [34℄. Firstly, the output of DAISY showed that themodel is algebrai
ally observable, whi
h is in good agreement with our resultsregarding the elimination of di�erential variables. Se
ondly, a

ording to theidenti�ability results of the analysis, the parameters m∞, h∞ and g (i.e.
p2, p4, p5) are not globally identi�able. Moreover, no pair from these threeparameters are identi�able. This fa
t also mat
hes the results of sub-se
tions3.1 and 3.2 where we 
ouldn't show that these three parameters (or anytwo of them) are identi�able under voltage 
lamp measurement 
onditions,assuming a single voltage step.The above results are well understandable in the 
ase of steady state,when m = m∞ and h = h∞, be
ause in this 
ase only the produ
t of thethree parameters appears as output in y = I = gmh(V − E). However, thedependen
e also holds during the transient period. In Appendix A a possibles
enario is des
ribed to demonstrate that the des
ribed non-identi�abilityproperties may 
ause problems in the 
ase of a realisti
 voltage step proto
ol.The lo
al identi�ability of (p1, p3) implies that both voltage dependenttime 
onstants 
an be attempted to be estimated at ea
h voltage value (lo-
ally), if the other parameters are known. This fa
t will be exploited laterin se
tion 4 during the 
onstru
tion of the proposed parameter estimation17



method.4. Parameter EstimationIn this se
tion we propose a parameter estimation method based on theresults of the identi�ability analysis. The main idea of the method is based onthe de
omposition of the parameter estimation problem into two 
onse
utivesteps as follows1. estimation of 
ondu
tan
e, a
tivation and ina
tivation parameters fromthe steady-state 
urrent values of multiple voltage 
lamp tra
es,2. estimation of the voltage dependent time 
onstants based on the entire
urrent response.The main motivation of the de
omposition of the parameter estimationpro
ess is to handle the possibly arising identi�ability problems (there may be
ertain model parametrizations and proto
ols in the 
ase of whi
h g, m∞ and
h∞ 
an not be uniquely determined from a single voltage step) des
ribed inse
tion 3.3. With the appli
ation of steady state 
urrents, the three parame-ters, between whi
h identi�ability problems (interdependen
e) may arise 
anbe estimated separately from other parameters (time 
onstants). As we willsee in the next subse
tion, with the utilization of prior information, theseissues 
an be addressed. Furthermore, as we will see later in se
tions 4.1.1and 4.2, this solution is a 
omputationally e�
ient estimation, that improvesthe overall 
omputational performan
e.The properties of the proposed method are investigated in the 
ase ofdata originating from simulation (in other words, using in sili
o data). Ifexperimental data were used, we did not know what the exa
t solution was,18



and therefore the error 
ould not be estimated. With simulated data, weare able to 
hara
terize the 
omponent of error arising from the numeri
alapproa
h, and obviate the e�e
ts of experimental noise. Moreover, the stru
-tural identi�ability results are independent of the measurement data sour
e.4.1. Analysis of the proposed method4.1.1. Estimation of 
ondu
tan
e and a
tivation parametersAs it has been shown in the previous se
tions, the parameters g, m∞ and
h∞ are not globally identi�able using a single voltage step input. We 
an
ir
umvent this problem by using multiple voltage steps, and by utilizing theprior knowledge that the voltage dependen
e of the steady state values ofa
tivation and ina
tivation fun
tions are des
ribed by Boltzmann-fun
tions(see Eqs. (3) and (6)).In the �rst step of the method, we will analyze only the steady state
urrents in the 
ase of n distin
t measured input voltage values (Vi, i ∈

{1, ..., n}). In this 
ase, the following set of nonlinear algebrai
 equationshold
Ii = gm∞ih∞i, i = 1, . . . n. (37)The a
tivation and ina
tivation fun
tions are given by

m∞i =

(

1 + exp

(

V1/2m − Vi

km

))

−1

, h∞i =

(

1 + exp

(

V1/2h − Vi

kh

))

−1(38)The unknown variables to be determined using eqs. (37) and (38) are g,
V1/2m, km, V1/2h and kh. Additionally, it is known that km > 0 and kh < 0.The obje
tive fun
tion for the parameter estimation is de�ned in a stan-19



dard way as
W1(θ1)V C =

n
∑

i=1

(Ii − gm∞ih∞i(Vi − E))2, (39)where θ1 = [g V1/2m km V1/2h kh]
T , and m∞i and h∞i are given by Eq. (38).For the optimization pro
ess we used the e�
ient, gradient-free Nelder-Meadsimplex algorithm to minimize the error [39℄. The maximum iteration numberwas 1000, the toleran
e of the obje
tive fun
tion was 10−8, and the toleran
eof the parameter values was 10−3.We analyzed the 
onvergen
e of the optimization for the following realisti
parameter values: g = 67 nS, V1/2m = −31.93 mV , km = 13.03, V1/2h =

−44.35 mV , kh = −5.14. Our results showed that the 
onvergen
e propertiesof the algorithm to the global optimum strongly depend on the number ofinput voltage tra
es (n). The results of simulation experiments suggest thatin order to obtain 
orre
t parameter estimation results, a lower bound for nis around 10, if the sele
ted input voltage values 
over their possible range inan equidistant way. The estimation results show that if only signi�
antly lessvoltage steps with the 
orresponding steady state 
urrent values are available,the optimization problem will be badly 
onditioned, and the 
onvergen
eproperties deteriorate.A

ording to the simulation and optimization results, we observed thata su�
ient (but not ne
essary) 
ondition for the 
onvergen
e to the globaloptimum in every 
ase is that the initial parameter values for optimizationshould be in the approximately ±25% neighborhood of the true values. This
an be regarded a realisti
 assumption, a

ording to [28℄ and [26℄, whi
h 
on-
lude that the estimation error of 
onventional algorithms (whi
h are simplybased on the �tting of exponentials to the 
urrent tra
e, and assume that20



a
tivation and ina
tivation are separated in time and m = h = 1 at the max-imum of the 
urrent 
urve) is in this range. This means that the 
onventionalalgorithms 
an be used to determine initial values for the optimization.The proposed method is based on steady-state 
urrents, and as a 
onse-quen
e, it works well only if there is a voltage interval present, where boththe steady state a
tivation and ina
tivation variables are di�erent from zero.If this interse
tion interval is narrow, the 
onvergen
e properties of the op-timization 
an be signi�
antly deteriorated by measurement noise. Withoutnoise, the proposed method with 10 voltage steps ranging equidistantly from-80 to -8 mV still 
onverged to the nominal parameters for e.g. in the 
aseof a
tivation/ina
tivation 
hara
teristi
s depi
ted in Fig. 1. However, a oneorder of magnitude higher number of iterations (i.e. a few thousand) wasneeded to �nd the nominal parameters 
ompared to the better 
onditioned
ases.
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Figure 1: A
tivation and ina
tivation 
urves (m∞ and h∞), with narrow interse
tion(V-type 
urves)We have to note that the basi
 Nelder-Mead simplex algorithm does not21



handle 
onstrains on the parameter values. In 
ontrast, we have expli
it 
on-straints on the maximal 
ondu
tan
e and the slope fa
tor of the Boltzmannfun
tions in our 
ase, namely g > 0, km > 0 and kh < 0. A

ording to ourexperien
e, the appropriately tuned simplex based optimization usually doesnot result in parameter values that violate these 
onstraints. Moreover, thesimplex method's ability to e�e
tively de
rease the obje
tive fun
tion valuein the �rst few iteration steps is ex
eptionally good (see Fig. 2), and that wasthe main reason for 
hoosing it. We note that there are other derivative-freeoptimization methods that 
an handle 
onstraints, e.g. the freely availableAsyn
hronous Parallel Pattern Sear
h (APPS) algorithm [40℄. The optimiza-tion did not require very high 
omputational performan
e due to the stati
nature of the problem. The longest required 
omputation time of the sim-plex based optimization was about 45 se
 on a typi
al dual 
ore desktop PCwith 2 GB RAM 2). This 
ase 
orresponds to the a
tivation fun
tions withvery narrow nonzero interse
tion depi
ted in Fig. 1 - dominantly the typi
alestimation time of 
ondu
tan
e and a
tivation parameters was about 2-3 se
.The evolution of the obje
tive fun
tion during the optimization pro
ess inthe 
ase of a typi
al estimation s
enarios of a
tivation parameters is depi
tedin the left plot of Fig. 2.4.1.2. Estimation of voltage dependent time 
onstantsAfter the estimation of g and the parameters of the Boltzmann fun
tions,our next task is to determine the time 
onstants at the parti
ular voltagesde�ned by the applied voltage steps. In this 
ase the global estimation of cbm,2In this 
ase the maximal number of iterations was in
reased to 500022
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Figure 2: Demonstration of 
onvergen
e properties: The evolution of the obje
tive fun
tionduring the global estimation of 
ondu
tan
e and a
tivation parameters (left plot), andduring the estimation of time 
onstants at a 
ertain voltage level (right plot). In the 
aseof the left plot, the error fell below the toleran
e limit de�ned for the obje
tive fun
tionin 4.1.1, whi
h means that the value of the obje
tive fun
tion is pra
ti
ally zero - this
orresponds to the steady state in this 
ase. In the right plot, the toleran
e limit for theparameters was rea
hed.
cam, VMaxm, σm, cbh, cah, VMaxh and σh in Eqs. (2)-(7) is also possible, butnot needed, be
ause the results of the identi�ability analysis have shown thatat a parti
ular voltage value τm and τh are identi�able, whi
h means that we
an estimate τm and τh, lo
ally at parti
ular voltage values without the priorknowledge of their Gaussian-type voltage dependen
e. If we perform a seriesof su
h lo
al estimations of τm and τh, we have to estimate only 2 parametersat the same time instead of 8.For the identi�
ation of τm(Vi) and τh(Vi) at a 
ertain voltage we 
aneither use the method proposed in [28℄ (if a lo
al maxima is present, whi
h isthe ne
essary 
ondition of this method), or, similarly to [26℄, we 
an simply23



perform the minimization of the following obje
tive fun
tion (we have 
hosenthis latter possibility in this paper):
W2(θ2)V C =

1

N
‖Imtot − Istot(θ2)‖2 (40)where θ2 is the parameter ve
tor (in
luding τm(Vi) and τh(Vi)), N is thenumber of data points in the measurement re
ord, and Imout and Isout denotethe measured and model 
omputed total output 
urrent (as a dis
rete timesequen
e). The state traje
tories, whi
h determine the 
omputed 
urrent
an be determined either by expli
it solution of the di�erential equations, asdes
ribed in [28℄.The 
onvergen
e to the global optimum (i.e. to the nominal parameters)and the remaining error depend on the value of the voltage steps, but in this
ase also on the holding potential. Previously, the holding potential had norole in the 
ase of the estimation of θ1, be
ause we only analyzed the valuesof the steady state 
urrents. Now the input data of the parameter estimationpro
ess is the whole 
urrent tra
e, and the initial values of the a
tivation andina
tivation variables. The 
omparison of the results in the 
ase of severalproto
ols is depi
ted in Fig. 3. The parameters of the parti
ular voltagestep proto
ols are des
ribed in Table 1, while the interpretation of proto
olparameters is depi
ted in Fig. 4. The evolution of the obje
tive fun
tionduring the optimization pro
ess is shown in the right plot of Fig. 2 in the
ase of a typi
al estimation s
enarios of time 
onstants.In Fig. 3, the reason for the signi�
ant devian
es of the ina
tivation time
onstant in the low voltage ranges is that the holding potential and the valueof the voltage step only 
aused a small 
hange in the steady state value ofthe ina
tivation variable (see the relevant values in the range of -90 / -60 in24
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Figure 3: Results of the parameter estimation pro
ess for τm(Vi) and τh(Vi) at variousvoltage step proto
olsTable 1: Di�erent voltage step proto
ols for the estimation of τm and τhestimation 1 estimation 2 estimation 3
Vhold [mV℄ -92 -68 -20
Vbase [mV℄ -94 -94 -88

interval [mV℄ 8 8 8
stepnum 10 10 10Appendix A in Fig. 7 3. If the di�eren
e between Vhold and the 
orrespondingvoltage step is larger, we get more reliable results (for example in the 
ase ofestimation 3, whi
h uses a higher Vhold of -20 mV gives better results in thelower voltage ranges). This means that if possible, it is worth to 
omplete3In the example detailed in Appendix A, the same a
tivation/ina
tivation 
hara
teris-ti
s were used, as de�ned in 4.1.1) 25
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Figure 4: Interpretation of VC proto
ol parameters Vhold, Vbase, interval and stepnumthe voltage step proto
ol with both a lower, and a higher holding potential.4.2. Comparison with other methodsThe above proposed parameter estimation algorithm was 
ompared withtwo other lo
al parameter estimation methods developed for voltage-
lampbased estimation. The method of Lee at al., proposed in [28℄, and the methodof Willms [26℄ have been 
hosen for this purpose.4.2.1. Comparison with other lo
al methodsInitial information. The method proposed in [28℄ is based on the analyti
alexpression of the derivative of the 
urrent (whi
h has to be zero in the ex-tremum). Therefore, this method assumes that there is a lo
al extremum inevery 
urrent 
urve (as it is shown Appendix A, this is not always the 
ase),whi
h 
an be determined a

urately. The other apriori information that isneeded for the appli
ation of this method is the same as for our proposedapproa
h (i.e. known steady state 
urrents and an interval where at least oneof the a
tivation or ina
tivation 
urve is non-zero).The 'full tra
e' method des
ribed in [26℄ simultaneously estimatesm∞, h∞and τm, τh from a given tra
e. Here it is assumed, that the maximal 
on-26



du
tan
e value of the 
hannel is known (or it has been estimated e�
ientlyprior to the estimation of m∞, h∞ and τm, τh).Computational e�
ien
y and a

ura
y. For the 
omparison of estimationa

ura
y and 
omputational time, the ben
hmark problem proposed in [28℄was used. The parameters and equations of the hypotheti
al ion 
hannel,used as ben
hmark problem 
an be found in appendix B.The steady state a
tivation and ina
tivation values (m∞ and h∞) were es-timated at every 10 mV from -50 to 50 mV (ex
ept at 0 mV, where no 
urrent�ows, due to E = 0 mV ). In the 
ase of all algorithms, the 
orrespondingerror fun
tion was minimized with the Nelder-Mead simplex method. Thestopping 
onditions of the simplex based optimization were the same as in se
-tion 4.1.1. The estimated and nominal values of the a
tivation/ina
tivationfun
tions and of the voltage dependent time 
onstants are depi
ted in �gures5 and 6.Table 2 summarizes the results of the 
omparison. In the table the re-quired total 
omputational time TC (
orresponding to the estimation of a
-tivation/ina
tivation parameters and time 
onstants) is indi
ated togetherwith the mean error of the a
tivation/ina
tivation 
hara
teristi
s (Eact) andvoltage dependent time 
onstants (Eτ ). The estimation algorithms were runin MATLAB on a standard dual-
ore desktop PC (3.2 GHz, 2 GB RAM).In 
on
lusion of the 
omparison we 
an say, that if the values of thesteady-state 
urrents are known, it is suggested to use the method proposedin this arti
le to estimate the a
tivation/ina
tivation 
urves (whi
h requiresusually only 2-3 s). For the estimation of τm and τh, if lo
al extremum ispresent in the 
urrent tra
e, the method proposed by Lee 
an be suggested,27
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Figure 5: Estimation results of the a
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tivation fun
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Figure 6: Estimation results of the voltage dependent time 
onstants τm and τh by variousmethods: The de
omposition method (proposed by this arti
le), the method of Lee et al.and the method of Willms.for whi
h the previously determinedm∞ and h∞ 
an be used as initial values.If no lo
al extremum is present in the 
urrent tra
e, the proposed method
an be used to determine τm and τh. Furthermore, as shown in se
tion 4.1.2,28



Table 2: Comparison of the 
omputational e�
ien
y and a

ura
yMethod TC [se
℄ Eact [%℄ Eτ [%℄de
omposition method 70 0.002 1.36Lee 8 1.057 1.288Willms 252 0.591 2.145if we 
omplete the measurements and the estimation with both a lower anda higher holding potential, the reliability of estimation results may improvesigni�
antly.4.2.2. Relation to global methodsIn this arti
le we have assumed one ion 
hannel. As mentioned, in this
ase the 
onventional estimation methods, whi
h are based on �tting expo-nentials on the 
urrent tra
e (see [28℄ and [26℄) 
an be used to determineuseful initial 
onditions for the analyzed lo
al te
hniques. In the analyzed
ases, ±25% error in the initial guess ensured the 
onvergen
e of lo
al meth-ods to the nominal values. It is however possible in general that the proposedlo
al methods 
onverge only to a lo
al minimum. In this 
ase the appli
ationof global optimization methods may be a solution. These methods requirelarger 
omputational e�ort in general (e.g. the di�erential evolution - DE -algorithm, whi
h outperforms simulated annealing and the geneti
 algortihm[29, 30, 31℄ in the estimation of HH models, requires 57 minutes in the 
aseof 14 voltage steps assuming a potassium 
hannel with one a
tivation gate ona similar plattform), but they reliably �nd the nominal values in most 
ases,even when the di�eren
e of initial 
onditions and the nominal value is about29



one order of magnitude. In 
ontrast, a

ording to our results the reliabilityof the proposed de
omposition method (whi
h means the 
onvergen
e to thenominal values) is above 95% in the 
ase when the initial parameter valuesare ±25% of the nominal values, while we assume ±50% or ±75% error inthe initial guess, the reliability of our algorithm is de
reased to 70 and 33 %respe
tively.While the proposed de
omposition method needs typi
ally about 400-800 iterations for the estimation of g, m∞ and h∞ (whi
h mean iterationswith low 
omputation demand as only the 
omputed steady-state 
urrentsare 
ompared with the measured ones), and about 40-60 iterations for theestimation of τm and τh for ea
h voltage step (whi
h demand more 
omputa-tional e�ort, as in this 
ase the whole tra
es are 
ompared), the DE algoritmtypi
aly demands about 300 iterations (in this 
ase, in ea
h step whole tra
esare 
ompared for multiple voltage values and multiple individuals, whi
h ex-plains the higher resulting running time).Furthermore, if we 
onsider multiple ion 
hannels, the 
onvergen
e prop-erties of lo
al methods signi�
antly deteriorate, regarding both the estima-tion of g/m∞/h∞ and τm/τh.In general, the appli
ation of global optimization methods, like the DE,
an be unavoidable, if we 
onsider multiple 
hannels, or if the prior knowledgeregarding the parameter values is limited. Although the estimation problemand the modeling assumptions are not 
ompletely identi
al in the two 
ases,our results support the �ndings in [31℄ that an input of multiple voltage stepsis required for the safe determination of model parameters.
30



5. Con
lusionsThe identi�ability properties of a simple ion 
hannel model used in Hodgkin-Huxley type neuron models were investigated in this paper using 
omputeralgebra methods. Two approa
hes, the di�erential algebrai
 method and thealgorithm based on the Taylor series expansion of the output were applied toinvestigate stru
tural identi�ability. Both methods require the symboli
 so-lution of nonlinear equations to get identi�ability results. The identi�abilityanalysis with both methods 
on
luded that the two steady-state parameters(m∞, h∞) and the 
ondu
tan
e (g) are not globally identi�able together.Moreover, no pair from these three parameters are identi�able.Moreover, it was shown that the two methods usefully 
omplement ea
hother in the identi�ability analysis. The di�erential algebra method resultedin a regression form model and an obje
tive fun
tion that is 
onvex in thetranformed parameters. The Taylor series expansion method 
learly showedthat no pair from the parameters p2, p4 and p5 is globally identi�able.Based on the results of the identi�ability analysis, a novel optimization-based identi�
ation method is proposed and demonstrated on in sili
o data.The proposed method is based on the de
omposition of the parameter es-timation problem into two parts. The �rst step in
ludes the estimation ofthe maximal 
ondu
tan
e value and the a
tivation/ina
tivation 
hara
teris-ti
s from the values of steady state 
urrents obtained from multiple voltagestep tra
es. The se
ond step of the parameter estimation problem performsparameter estimation of the voltage dependent time 
onstants. A

ording tothe results of the identi�ability analysis, this step 
an be done lo
ally, if thesteady state values of the a
tivation/ina
tivation variables 
orresponding to31



the a
tual voltage value are known.The results of the arti
le are used to formulate expli
it 
riteria for thedesign of voltage 
lamp proto
ols whi
h are the following.1. The voltage steps should be long enough to ensure that the a
tivationand ina
tivation variables are able to (at least approximately) rea
htheir steady state values.2. At least 10 voltage steps are required for the safe estimation of theinvestigated 5 parameters 
orresponding to the a
tivation, ina
tivation
urves and 
ondu
tan
e values.3. To provide a reliable estimation of the time 
onstants in the wide volt-age range, the measurements have to be 
ompleted both with a higherand a lower holding potential.One possible generalization of the parameter estimation problem wouldbe the addition of further ion 
hannels of similar or di�erent type, and thein
lusion of di�erent powers of a
tivation and ina
tivation variables in the
urrent equations. From an optimization point of view the in
lusion of pow-ers of a
tivation and ina
tivation variables would lead to a mixed-integerproblem.In addition, the identi�ability analysis of the kineti
 des
ription of HHmodels (see e.g. [26℄) would be a natural extension of the work des
ribed inthis paper.6. A
knowledgementsThis work was supported by the Hungarian National Fund (OTKA K-83440). 32



Appendix A: Example showing the la
k of global identi�abilityIn this appendix, we show a physi
ally meaningful example that illustratesthe non-global identi�ability of the ion 
hannel model with respe
t to thethree parameters (namely, g, m∞, and h∞) that often have to be estimated.Other model parameters are assumed to be known. In addition, this examplealso demonstrates the s
enario, when a lo
al maximum in the 
urrent tra
e(assumed in [28℄) does not appear.First, it will be shown that our model 
an produ
e exa
tly the sameoutput for di�erent parameter/initial 
ondition values during the voltagestep proto
ol. The solution of the state equation in this 
ase is given by
x1(t) = p2 + (x1(0)− p2)e

−p1t

x2(t) = p4 + (x2(0)− p4)e
−p3t, (41)from whi
h the output 
urrent is 
omputed as

y(t) = p5k1(p2 + (x1(0)− p2)e
−p1t)(p4 + (x2(0)− p4)e

−p3t). (42)Now, let us s
ale the model parameters with a positive s
alar λ as follows:
p∗2 = λ · p2, and p∗5 = p5/λ. Furthermore, let us 
hoose the initial values ofthe state variables as x∗

1(0) = λ · x1(0), x∗

2(0) = x2(0). The output of themodi�ed model is then
y∗(t) = p∗5k1x

∗

1x
∗

2

= k1p
∗

5(p
∗

2 + (x∗1(0)− p∗2)e
−p1t)(p4 + (x∗2(0) − p4)e

−p3t) (43)
= k1

p5

λ
(λp2 + (λx1(0)− λp2)e

−p1t)(p4 + (x2(0) − p4)e
−p3t)

= y(t) 33



from whi
h it is 
lear, that the s
aled model generates exa
tly the sameoutput as the original one. The 
ir
umstan
es of the above 
ase are notvery likely to hold in the 
ase of a standard voltage 
lamp proto
ol, wherethe voltage is held at an other 
onstant value (the holding potential Vhold)before the voltage step. The holding potential determines the initial valuesof the di�erential variables: x1(0) = m(0) = m∞(Vhold) and x2(0) = h(0) =

h∞(Vhold)). However, the s
enario is not impossible, as we will show below.Using two �
titious neurons, we will now show that the measurable 
ur-rent responses of a voltage step during voltage 
lamp measurement 
an beidenti
al in the 
ase of di�erent parameters.Let us suppose that both neurons to be 
ompared here inhibit only oneion 
hannel, and the a
tivation and ina
tivation 
hara
teristi
s of the �rstneuron are des
ribed by
m∞(V ) =

(

1 + exp

(

V1/2m − V

km

))

−1 (44)
h∞(V ) =

(

1 + exp

(

V1/2h − V

kh

))

−1The parameter values for the two neurons 
an be found in Table 3. Theother parameters in the 
ase of both neurons were the following
h∞ = 0.75, VMaxm = −78mV, σm = 34, cam = 8.7ms,

cbm = 0.8ms, E = −93mV, VMaxh = −23mV

σh = 24, cah = 6.9ms, cbh = 9ms. (45)As it is shown in Fig. 7, the value of m∞ is 0.35 at -40mV and it is 0.20at -50mV. At the same time, the value of m∗

∞
of the se
ond neuron is 0.52534



Table 3: Parameters of the two neuronsNo V1/2m km V1/2h kh g1 -31.932 mV 13.033 -44.354 mV -5.139 67 nS2 -41.056 mV 10.555 -44.354 mV -5.139 44.67 nS
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Figure 7: Voltage dependen
ies of the steady a
tivation and ina
tivation state fun
tions
m∞, m∗

∞
and h∗

∞
=h∗

∞at -40mV and 0.30 at -50mV. The ina
tivation 
urve 
orresponding to h∞was the same in both 
ases. We applied a holding potential of -40 mV and avoltage step to -50 mV at t=100ms.The 
omparison of traje
tories of a
tivation and ina
tivation variablesand the output are depi
ted in Fig. 8. The �gure 
learly shows that theoutputs are identi
al in the two 
ases, although the parameters of the twomodels are di�erent.
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Figure 8: The a
tivation and ina
tivation variables, and the output during the voltage stepin the 
ase of neuron 1 and 2. The upper index ∗ refers to the a
tivation and ina
tivationvariables of neuron 2. The measured output 
urrent tra
es are identi
al in both 
ases.Appendix B: ben
hmark example for the 
omparison of estimationmethodsA hypotheti
al ion 
hannel was 
onsidered, des
ribed by the followingequations:
m∞ =

1

1 + exp
(

−V−10
10

) h∞ =
1

1 + exp
(

V+10
10

) (46)
τm = 2.5+ 3exp

(

−

(

(−10− V )

20

)2
)

τh = 105− 45exp

(

−

(

(5− V )

160

)2
)(47)

dm

dt
=

m∞(V )−m

τm(V )

dh

dt
=

h∞(V )− h

τh(V )
I = gmh(V −E) (48)and g = 0.5mS/cm2 and E = 0mV .The parameters were taken from [28℄.36
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