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Abstract

Identifiability analysis of a single Hodgkin-Huxley (HH) type voltage depen-
dent ion channel model under voltage clamp circumstances is performed in
order to decide if one can uniquely determine the model parameters from
measured data in this simple case. It is shown that the two steady-state
parameters (M, hoo) and the conductance (g) are not globally identifiable

together using a single step voltage input. Moreover, no pair from these
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three parameters is identifiable. Based on the results of the identifiability
analysis, a novel optimization-based identification method is proposed and
demonstrated on in silico data. The proposed method is based on the decom-
position of the parameter estimation problem into two parts using multiple
voltage step traces. The results of the article are used to formulate explicit
criteria for the design of voltage clamp protocols.
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1. Introduction

The HH (Hodgkin-Huxley) modelling formalism of membrane currents
and cell electrophysiology is one of the most widely used framework for the
purpose of modelling excitable cells [1|. HH models, that are essentially non-
linear electrical circuit models, are composed of parallel voltage dependent
(and possibly voltage independent) conductances, that correspond to vari-
ous types of membrane currents. The dynamical descriptions of neuronal
behavior, ranging from the fundamental theoretical principles |2, 3, 4] to the
wide range of applications with special focus, are predominantly based on
this model class.

Because of the theoretical and practical importance of HH models, a large
number of papers are devoted to their parameter estimation under various
conditions, applying different approaches and estimation techniques. How-
ever, the fundamental question, whether it is at least theoretically possible

to determine all of the model parameters from the measured data - that is,



the question of theoretical identifiability - has not even been raised for HH

models.

The concept and importance of identifiability. Once the model structure is
fixed (see later Eqs. (2)-(7) in our case), one can perform parameter estima-
tion, the quality of which is crucial in subsequent usability of the obtained
model [5]. The structural identifiability properties of the system describe
whether there is a theoretical possibility for the unique determination of
system parameters from appropriate input-output measurements or not. It
is important to emphasize, that identifiability is a property of the model
structure, the analysis of which should ideally precede any model parameter
estimation. Basic early references for studying identifiability of dynamical
systems are [6, 7]. It has been clearly shown in the case of process systems,
that prior structural identifiability analysis is an important step in the solu-
tion of model calibration problems [8]. The paper [9] solves the problem of
structural parameter identifiability for chemical reaction network models.
The study and development of differential algebra methods, which are
used for identifiability analysis, contributed to the better understanding of
important system theoretic problems [10, 11]. The most important defini-
tions and conditions of structural identifiability for general nonlinear systems
were presented in [12] in a very clear way. Further developments in the field
include the identifiability conditions of rational function state-space models
[13], and the possible effect of special initial conditions on identifiability [14].
The importance of identifiability has been also stressed in the context of
biological models [15, 16, 17, 18]. However, many modeling and parameter

estimation studies in computational biology still continue to ignore this key



property.

Parameter estimation and identifiability-related results of HH models. Sev-
eral articles have been published which are focusing on parameter estima-
tion problem in the case of HH based models under various assumptions.
Most of the published work [19, 20, 21, 22, 23, 24, 25] is considering current
clamp setup, when the voltage traces are measured in the case of known in-
jected currents or unknown synaptic currents. In addition, a significant part
of literature data assumes prior knowledge regarding the channel kinetics
[19, 22, 21, 25]. The article [20] provides a survey of automated parameter-
search methods for compartmental neural models, regarding also the param-
eters of activation and inactivation curves. The articles |26, 27, 28, 29, 30|
consider voltage clamp scenarios (in this case the voltage is fixed, and trans-
membrane current traces are measured). In [29, 30, 31] a computationally
effective global search method, differential evolution is applied.

Although the explicit identifiability properties are not addressed in the
above papers, they discuss several issues, which are related to identifiability.
The question whether the particular parameter values selected are the only
viable parameters or just one of several possible solutions, has been addressed
in [19]. The paper [32]| also discusses emerging identifiability problems in
the case of HH based neuronal models. In this article the authors derive 20
different computational models for the cerebellar Purkinje cell, which produce
very similar outputs to current injections, and analyze their geometry in
the parameter space. The article [22] considers an estimation problem of
a multicompartmental model based on voltage traces, and shows that if we

assume the knowledge of channel kinetics, the channel densities (in addition



intracompartmental conductances and overall strength of the presynaptic
input) can be determined. Furthermore, the article shows that the proposed
method leads to algorithms that are guaranteed to converge to the unique
optimum. We will see later that identifiability results described in this article
regarding the voltage clamp case support this observation (if channel kinetics
are known, the maximal conductance can be uniquely determined).
Regarding the results corresponding to voltage clamp setup, the articles
[26, 28| realized the weaknesses of the conventional estimation algorithms,
which originate from the assumption of separated activation and inactiva-
tion processes, and provided improved methods for the estimation of HH
models. Lee et al. in [28] proposed a new numerical approach to interpret
voltage clamp experiments. Moreover, it is claimed in [28], that all channel
parameters can be determined from a single appropriate voltage step, but
this statement has not been proven rigorously for the whole meaningful pa-
rameter space. In addition, the numerical method proposed in [28] is based
on the determination of the time and value of the maximal current during
the voltage step measurement, but, as we will also show, a local maximum

does not necessary appear in every case.

Aims. Because of the lack of identifiability results even in the simplest pos-
sible HH model with just a single ion channel, the primary aim of this paper
is to carry out a rigorous identifiability analysis in this simplest case under
voltage clamp measurement conditions. We want to show that identifiability
problems may arise even in the very simple case of one HH channel with
unknown kinetics and a single voltage step measurement protocol.

An additional goal of the paper is to propose a well grounded parameter



estimation method for the maximal conductance and the kinetic parameters
of the channel based on the results of identifiability analysis that is able to
handle the possibly appearing identifiability problems in the analyzed case.

2. Materials and Methods

In this section the model framework, the assumed measurement protocol,

and the methods applied for identifiability analysis are described.

2.1. Ion channel model

We consider a simple hypothetical ion channel with one activation (m)
and one inactivation variable (h). According to the most widespread notation
in computational neuroscience (see for eg. [4]), the current, which is the

measured variable, is simply described by
I =gmPmh(V — E) (1)

where V' [mV] is the voltage, g [nS] is the maximal conductance, and F
[mV] is the reversal potential of the corresponding ion. The positive integer
exponents p,, and pj correspond to the number of independent subunits
of the voltage channel protein. We will assume the simplest case in our
calculations when p,, = p, = 1. If p,, and p, # 1, but their values are
known, the estimation algorithm proposed in section 4 may be used with the
corresponding straightforward modification.

Both m and h are state variables in the following nonlinear state-space



model

dm  me(V)—m

R (2)
ma (V) = <1+exp<vl/2km7n:v>>_l, o > 0 3)
heoV) = <1+exp<W>>_l, o < 0 (6)

where Vi 2, ki, V121, and ky, are the parameters of the Boltzmann functions
which describe the steady state activation and inactivation values ¢y, Com,
Vitazms Oms Cohs Cahs Vaiazn and oy, denote the parameters of Gauss-functions
which describe the voltage dependent time-constants .

As described in section 1, in this paper we will consider wvoltage clamp

!'We have to note that the approximation of the steady state values with Boltzmann
functions is not always realistic, as it is described in [26]. However, in the rest of this paper
we assume that this assumption holds. It can be said that the use of Boltzmann-type
sigmoid functions for the description of steady-state values in the literature is widespread,
but not exclusive (see e.g. [33]). The description of the voltage dependent time constants
in the literature is more diverse. In fact, the wide set of possible time constant curves
corresponding to various rate constant functions is described in [26]. The applied Gauss-
functions are an approximation of the skewed bell shape curves, resulting from the rate

constant based description, where the rate constants depend exponentially on the voltage

(see [26]).



measurement conditions, when the voltage is determined and the transmem-
brane currents are measured.

We have to note that because of the bifurcation structure of HH models,
small estimation errors of ion channel properties based on the voltage clamp
setup may imply significantly different behavior at the membrane voltage
level, if the voltage is not fixed. However the description of membrane voltage

dynamics is not in the scope of this paper.

2.2. Voltage step protocol

An important version of the voltage clamp method is when the voltage,
which is in this case the manipulable input (u) of the system, is held piece-
wise constant (V(t) = u(t) = Vj for ty <t < ty4q, k = 1,...,N). Thus,
during each interval, the values of my, he, 7, and 7, can be considered
as time-invariant parameters in addition to ¢ and E. This implies that the
non-polynomial nonlinearities of Boltzmann and Gauss functions are natu-
rally eliminated from the equations, and the model will fall into the class of
polynomial systems, which makes the application of effective computer alge-
bra based software tools (e.g. DAISY [34]) possible for identifiability testing.
Moreover, we also point out that this way we also neglect the prior knowledge
that the activation and inactivation functions are described by Boltzmann
and Gauss functions.

We will denote the voltage independent nature of the above parameters
shortly by suppressing the V' argument, i.e. my (V) = Mmoo, Tn(V) = 7,
hoo (V) = hy and 7,(V) = 75,, with V' = V. In this case, Eqs. (1-7) are

simplified as follows:
I =gmh(Vy — E) = gmh(u — E) (8)

8



y=1, wu=1Vy= const.
d_m_moo—m d_h_hoo—h (9)
a7, At T,

where the model parameters are g, F, mqo, T, hoo and 7.

2.3. Structural identifiability notions and tools

In general let us consider the following class of models

&= f(z,u,0), z(0)=xg (10)
y = h(z,u,0)

where x € R” is the state vector, y € R™ is the output, u € R¥ is the input,
and 6 € R? denotes the parameter vector. We assume that the functions f
and h are polynomial in the variables z, v and . We remark that majority of
nonlinear state-space models with smooth right-hand sides can also be em-
bedded into the above polynomial model form (10) on the price of increasing

the state space dimension [35].

2.3.1. The notions of structural and practical identifiability

The problem statement of structural identifiability analysis is to deter-
mine, whether there is a theoretical possibility for the unique determination
of model parameters from measurement data. Shortly speaking, global struc-

tural tdentifiability means that
y(to') = y(t|e") = 6" = 6" (11)
where

y(t[0) = h(x(t,0), u(t),0) (12)



and x(t,0) denotes the solution of (10) with parameter vector #. This means
that if the system outputs are identical, then the underlying parameters are
necessarily the same: this is a model property, e.g. the property of (10). Ac-
cording to (11), a structurally non-identifiable model may produce exactly
the same observed output with different parametrizations. This is clearly a
fundamental obstacle of determining the true model parameters from mea-
surements irrespectively of the applied estimation method (however sophis-
ticated it is), even if the selected model structure is considered to be correct.
The lack of structural identifiability can usually be fixed by incorporating
more prior information into the modeling process e.g. in the form of model
parameter constraints, by changing the input/output configuration, or by
modifying the internal model structure in case of need. If (11) is valid only
in a subset of the studied parameter space, then the model is called locally
structurally identifiable.

Even if the conditions of structural identifiability are fulfilled, we are often
faced with serious computational difficulties during the implementation of the
actual parameter estimation procedure. These problems are usually referred
to as practical identifiability problems, and they are most often caused by the
scarcity and/or the noisiness of measurement data, by low output sensitivity
to certain parameters, or simply by inappropriately designed input signals.
Beside more advanced measurement technology, the results in this case can

often be greatly improved using optimal experiment, design techniques [16].

2.3.2. Global structural identifiability analysis using differential algebra
The following notations, definitions and conditions are mostly taken from

[12]. Let us denote a differential polynomial F'(u,a,...,y,7,...) by F(u,y;p)

10



where p = %.
The structure (10) is globally identifiable if and only if by differentiating,
adding, scaling and multiplying the equations the model can be rearranged

to the parameter-by-parameter linear regression form:

Pi(u, y;p)0; — Qiu,y;p) =0 i=1,....d (13)
It is visible from (13) that 6; can be expressed as

g — Qilwyip)

Pi(u,y;p)

d (14)

if P;s are non-degenerate. The non-degenerate condition can be fostered by
ensuring that the inputs excite the system dynamics sufficiently so that the

parameter vector can be determined in a numerically well-conditioned way.

2.3.8. Structural identifiability analysis using Taylor series expansion of the
output

Consider again the nonlinear model structure in (10). The well-known

paper [36] gives the following condition for global structural identifiability

based on the Taylor series expansion of the system output. Let

k

o d
cx(0) = lim —7y(t.0) (15)

Then a sufficient condition of global structural identifiability is
ck(ﬁl) :Ck<92), ]{Z:O,l,...,kmax, —— ‘91 :92 (16)

where k,q. 18 a positive integer (small enough for the symbolic computa-
tions to remain tractable). It is important to remark that the lack of global

solvability of ¢, for the system parameters in the case of a given k,,,, value

11



is generally not enough for proving non-identifiability, since the inclusion of
higher derivatives (new ¢;-s) may result in the solvability of the correspond-

ing system of nonlinear equations.

3. Identifiability Results

In this section the obtained results corresponding to structural identi-
fiability properties of ion channel models under voltage step measurement
conditions, and the proposed parameter estimation method based thereon

are described.

3.1. Identifiability analysis using differential algebra

The identifiability analysis described in section 2.3.2 requires the elim-
ination of the differential (state) variables m and h from the model Egs.
(8)-(9) and then finding the parameter groups that can be determined from
the resulting equations. For convenience, let us introduce the following

parametrization:

r1=m, To =h

1 1
P1= —, P2 =Moo, P3 = — (17)
Tm Th

Ps=heo, ps =9, k1 =u—FE

It can be seen that the physical system parameters are trivially computable,
if p1,...,ps are given. In general, we assume that k; is known (this means
that we assume known reversal potential), and we are searching for the largest

subset in {py,...,ps} that is globally identifiable. Using Eq. (17), the state

12



and output equations of the simple model can be written as

&1 = p1(p2 — x1), T2 = p3(ps — T2) (18)
Y = kipsz122 (19)

To get a pure input-output relation, we have to eliminate the state variables

from Eqs. (18)-(19). For this, the time-derivative of y is taken that gives

Y = (—=p1 — p3)y + k1pspspazy + kipspipats. (20)

By taking the second derivative of y with respect to time, the following

equation is obtained

§ = (—p1 — p3)y — k1psp1pspaz1 — kipipipapss

+ 2k1p1pap3paps (21)
It can be observed that both Eq. (20) and Eq. (21) depend linearly on
r1 and x,, therefore the state variables can be expressed from them and
substituted to the original output equation (19) in a straightforward way.

This property is often called algebraic observability [10, 34]. The expression

and substitution results in the following lengthy input-output relation

0= (—ap— aras —a1a3)y — (a1a4 — aja2)y

— 2a13 + (agas + azaq)yy + (a2 + ag)yij + (a3 + as)yj

+ azasy® + azagy? + i + a? (22)
where ay, ..., as are defined as

ap = (p3 — p1p3)(k1pip2 — k1p1paps)*paps,
a1 = 2k1p1p2p3paps, a2 = 2p1 + p3

a3 = p? + p1p3, as = p1 + 2p3, as = p1p3 + p3 (23)

13



The coefficients in Eq. (22) define the following set of equations for the nine

coefficients ¢;,7 =1, ..., 9

—Qp — a1a5 —ajaz = C
—a104 — @102 = C2
—20,1 = C3

Ao0s5 + a3y = C4

as +as = Cg
asas = Cr
204 — C§

(24)
(25)
(26)
(27)
as+a; = ¢ (28)
(29)
(30)
(31)
(32)

CL%ICQ

The solvability of Eqs. (24)-(32) with respect to the parameters py, ..., ps
can be checked by e.g. Buchberger’s algorithm (see, e.g. [14]). Using this
method, the following parameter-pairs can be shown to be globally iden-

tifiable: (p1,p2), (pl,p4), (p17p5), (pz,ps), (pg,p4), (pg,p5). The following

parameter combinations turned out to be locally identifiable (with 2 possible

solutions for each): (p1,ps), (p1,p2,p3), (P1,P3,P4), (P1, D03, D5)-

For comparison, the identifiability analysis technique based on the Taylor
series expansion of the output has been applied, too, that is described in the

following subsection.

3.2. Structural identifiability analysis using the Taylor series method

To keep the original physical parameters (or their simple transforma-

tions), let us use the previously defined parametrization (17) of the ion chan-
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nel model.

The solution of the state equations (18) is easy to give with zero initial

condition:
21(t) = —p2e " + o (33)
2o(t) = —pae”P" + py (34)
From this, the output and its successive derivatives are given by

Y(t) = k1papaps(1 + e~ PrFP)E _ ompit _ o=pat)

() = k1papaps(—(p1 + p3)e” PP e7P1t | poePaty

(35)
y (1) = kipapaps((—1)* (p1 + pa)Fe” )iy
+ (=) e 4 phe), k> 1.
From Eq. (35), the coefficients ¢x(f) can be computed as
co(0) = 0
(36)

c(0) = k1popaps((—1)" (p1 + p3)"+

+ (=DM Y 4 p5)), k> L

By the symbolic solution of (36), the following parameter pairs were found

to be globally identifiable: (p1,ps), (p1,p2), (P3;P2), (P3,P5), (P1, 1), (D3, P4)-
The pair (p1, p3) was found to be locally identifiable with 2 possible solutions

as well as the triplets (p1,ps,ps5), (P1,P3,D4), (P1,D3,D2).

3.3. Discussion of identifiability results
First we have to emphasize again, that the determination of the identi-

fiability properties of a model is an important model-analysis result, which

15



should precede the parameter estimation in ideal case. If identifiability prob-
lems arise in a model with an assumed input-output configuration, this will
lead to the lack of unique global extremum regarding the optimization prob-
lem corresponding to parameter estimation. In this case, the parameter
estimation process either has to be completed with additional measurements
corresponding to different input-output configurations (regarding neuronal
models, one may e.g. consider using both voltage clamp and current clamp
data), or reinterpretation of the measurement results is needed, taking into
account additional assumptions regarding model properties (see later in sub-
section 4).

Comparing the results in sub-sections 3.1 and 3.2 above one can observe,
that the two methods gave exactly the same globally and locally identifi-
able parameter combinations. We remark that the necessary computations
for both methods were performed using the freely available Sage symbolic
computation software environment (see. e.g. [37], [38]).

The maximal number of identifiable parameters (i.e. the limits of struc-
tural identifiability) in the case of a single voltage step measurement were
well-observable from the results of the differential algebra method. Moreover,
it is visible from Eq. (22) that this method (if successful) finally gives us such
a dynamical description that is linear in the transformed model parameters
(i.e. a regression form model). This theoretically allows us to construct
such an objective function for the parameter estimation that is convex in the
transformed parameters (e.g. such a one that is a quadratic function of the
prediction error). However, it is often not practically feasible to compute the

required higher derivatives of the measured system output.
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On the other hand, the smaller set of nonlinear equations in the case of
the Taylor series method was much more easily tractable with symbolical
software. Furthermore, it can be seen from the closed form of Eqs. (36) that
neither (ps, ps, ps), nor any pair from these three parameters can be globally
identifiable.

To check and support our former calculations, we also used the differential
algebra software DAISY [34]. Firstly, the output of DAISY showed that the
model is algebraically observable, which is in good agreement with our results
regarding the elimination of differential variables. Secondly, according to the
identifiability results of the analysis, the parameters mq,, ho and g (i.e.
P2, P4, Ps) are not globally identifiable. Moreover, no pair from these three
parameters are identifiable. This fact also matches the results of sub-sections
3.1 and 3.2 where we couldn’t show that these three parameters (or any
two of them) are identifiable under voltage clamp measurement conditions,
assuming a single voltage step.

The above results are well understandable in the case of steady state,
when m = my and h = h, because in this case only the product of the
three parameters appears as output in y = I = gmh(V — E). However, the
dependence also holds during the transient period. In Appendix A a possible
scenario is described to demonstrate that the described non-identifiability
properties may cause problems in the case of a realistic voltage step protocol.

The local identifiability of (p1,ps) implies that both voltage dependent
time constants can be attempted to be estimated at each voltage value (lo-
cally), if the other parameters are known. This fact will be exploited later

in section 4 during the construction of the proposed parameter estimation

17



method.

4. Parameter Estimation

In this section we propose a parameter estimation method based on the
results of the identifiability analysis. The main idea of the method is based on
the decomposition of the parameter estimation problem into two consecutive

steps as follows

1. estimation of conductance, activation and inactivation parameters from
the steady-state current values of multiple voltage clamp traces,
2. estimation of the voltage dependent time constants based on the entire

current response.

The main motivation of the decomposition of the parameter estimation
process is to handle the possibly arising identifiability problems (there may be
certain model parametrizations and protocols in the case of which g, m., and
ho can not be uniquely determined from a single voltage step) described in
section 3.3. With the application of steady state currents, the three parame-
ters, between which identifiability problems (interdependence) may arise can
be estimated separately from other parameters (time constants). As we will
see in the next subsection, with the utilization of prior information, these
issues can be addressed. Furthermore, as we will see later in sections 4.1.1
and 4.2, this solution is a computationally efficient estimation, that improves
the overall computational performance.

The properties of the proposed method are investigated in the case of
data originating from simulation (in other words, using in silico data). If

experimental data were used, we did not know what the exact solution was,
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and therefore the error could not be estimated. With simulated data, we
are able to characterize the component of error arising from the numerical
approach, and obviate the effects of experimental noise. Moreover, the struc-

tural identifiability results are independent of the measurement data source.

4.1. Analysis of the proposed method

4.1.1. Estimation of conductance and activation parameters

As it has been shown in the previous sections, the parameters g, m., and
hs are not globally identifiable using a single voltage step input. We can
circumvent this problem by using multiple voltage steps, and by utilizing the
prior knowledge that the voltage dependence of the steady state values of
activation and inactivation functions are described by Boltzmann-functions
(see Egs. (3) and (6)).

In the first step of the method, we will analyze only the steady state
currents in the case of n distinct measured input voltage values (V;, i €
{1,...,n}). In this case, the following set of nonlinear algebraic equations
hold

I = gmeoihosi, 1=1,...n0. (37)

The activation and inactivation functions are given by

Vijem — Vi - Vi -V -
e (ren () s ()
m h

(38)
The unknown variables to be determined using eqs. (37) and (38) are g,
Vij2ms Em, Vijan and k. Additionally, it is known that k,, > 0 and kj < 0.

The objective function for the parameter estimation is defined in a stan-

19



dard way as
n

Wi(0)ve = D (I = gmecihoci(Vi = E))?, (39)

i=1
where 01 = [g Vijam km Vijon ki)', and moe; and he; are given by Eq. (38).
For the optimization process we used the efficient, gradient-free Nelder-Mead
simplex algorithm to minimize the error [39]. The maximum iteration number
was 1000, the tolerance of the objective function was 1078, and the tolerance
of the parameter values was 1073.

We analyzed the convergence of the optimization for the following realistic
parameter values: g = 67 nS, Vi, = —31.93 mV, k,, = 13.03, Vi9, =
—44.35 mV | k;, = —5.14. Our results showed that the convergence properties
of the algorithm to the global optimum strongly depend on the number of
input voltage traces (n). The results of simulation experiments suggest that
in order to obtain correct parameter estimation results, a lower bound for n
is around 10, if the selected input voltage values cover their possible range in
an equidistant way. The estimation results show that if only significantly less
voltage steps with the corresponding steady state current values are available,
the optimization problem will be badly conditioned, and the convergence
properties deteriorate.

According to the simulation and optimization results, we observed that
a sufficient (but not necessary) condition for the convergence to the global
optimum in every case is that the initial parameter values for optimization
should be in the approximately +25% neighborhood of the true values. This
can be regarded a realistic assumption, according to [28] and [26], which con-
clude that the estimation error of conventional algorithms (which are simply

based on the fitting of exponentials to the current trace, and assume that
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activation and inactivation are separated in time and m = h = 1 at the max-
imum of the current curve) is in this range. This means that the conventional
algorithms can be used to determine initial values for the optimization.
The proposed method is based on steady-state currents, and as a conse-
quence, it works well only if there is a voltage interval present, where both
the steady state activation and inactivation variables are different from zero.
If this intersection interval is narrow, the convergence properties of the op-
timization can be significantly deteriorated by measurement noise. Without
noise, the proposed method with 10 voltage steps ranging equidistantly from
-80 to -8 mV still converged to the nominal parameters for e.g. in the case
of activation/inactivation characteristics depicted in Fig. 1. However, a one
order of magnitude higher number of iterations (i.e. a few thousand) was
needed to find the nominal parameters compared to the better conditioned

cases.

0.8r

0.61

0.4

0.21

0 -100 50

V [mV]

Figure 1: Activation and inactivation curves (ms, and h.,), with narrow intersection

(V-type curves)

We have to note that the basic Nelder-Mead simplex algorithm does not
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handle constrains on the parameter values. In contrast, we have explicit con-
straints on the maximal conductance and the slope factor of the Boltzmann
functions in our case, namely ¢ > 0, k,, > 0 and k;, < 0. According to our
experience, the appropriately tuned simplex based optimization usually does
not result in parameter values that violate these constraints. Moreover, the
simplex method’s ability to effectively decrease the objective function value
in the first few iteration steps is exceptionally good (see Fig. 2), and that was
the main reason for choosing it. We note that there are other derivative-free
optimization methods that can handle constraints, e.g. the freely available
Asynchronous Parallel Pattern Search (APPS) algorithm [40]. The optimiza-
tion did not require very high computational performance due to the static
nature of the problem. The longest required computation time of the sim-
plex based optimization was about 45 sec on a typical dual core desktop PC
with 2 GB RAM ?2). This case corresponds to the activation functions with
very narrow nonzero intersection depicted in Fig. 1 - dominantly the typical
estimation time of conductance and activation parameters was about 2-3 sec.
The evolution of the objective function during the optimization process in
the case of a typical estimation scenarios of activation parameters is depicted

in the left plot of Fig. 2.

4.1.2. Estimation of voltage dependent time constants
After the estimation of g and the parameters of the Boltzmann functions,
our next task is to determine the time constants at the particular voltages

defined by the applied voltage steps. In this case the global estimation of ¢,,,

2Tn this case the maximal number of iterations was increased to 5000
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Figure 2: Demonstration of convergence properties: The evolution of the objective function
during the global estimation of conductance and activation parameters (left plot), and
during the estimation of time constants at a certain voltage level (right plot). In the case
of the left plot, the error fell below the tolerance limit defined for the objective function
in 4.1.1, which means that the value of the objective function is practically zero - this
corresponds to the steady state in this case. In the right plot, the tolerance limit for the

parameters was reached.

Camy, ViMazms Oms Cohy Cahs Vazh and oy, in Eqgs. (2)-(7) is also possible, but
not needed, because the results of the identifiability analysis have shown that
at a particular voltage value 7,, and 7, are identifiable, which means that we
can estimate 7, and 7, locally at particular voltage values without the prior
knowledge of their Gaussian-type voltage dependence. If we perform a series
of such local estimations of 7,,, and 7,, we have to estimate only 2 parameters
at the same time instead of 8.

For the identification of 7,,(V;) and 7,(V;) at a certain voltage we can
either use the method proposed in [28] (if a local maxima is present, which is

the necessary condition of this method), or, similarly to [26], we can simply
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perform the minimization of the following objective function (we have chosen

this latter possibility in this paper):

1
Wa(02)ve = N”Itn;t =I5, (02)]]2 (40)

where 65 is the parameter vector (including 7,,(V;) and 7,,(V;)), N is the

number of data points in the measurement record, and I, and I}, denote

ou out
the measured and model computed total output current (as a discrete time
sequence). The state trajectories, which determine the computed current
can be determined either by explicit solution of the differential equations, as
described in [28].

The convergence to the global optimum (i.e. to the nominal parameters)
and the remaining error depend on the value of the voltage steps, but in this
case also on the holding potential. Previously, the holding potential had no
role in the case of the estimation of 6;, because we only analyzed the values
of the steady state currents. Now the input data of the parameter estimation
process is the whole current trace, and the initial values of the activation and
inactivation variables. The comparison of the results in the case of several
protocols is depicted in Fig. 3. The parameters of the particular voltage
step protocols are described in Table 1, while the interpretation of protocol
parameters is depicted in Fig. 4. The evolution of the objective function
during the optimization process is shown in the right plot of Fig. 2 in the
case of a typical estimation scenarios of time constants.

In Fig. 3, the reason for the significant deviances of the inactivation time
constant in the low voltage ranges is that the holding potential and the value
of the voltage step only caused a small change in the steady state value of

the inactivation variable (see the relevant values in the range of -90 / -60 in
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Figure 3: Results of the parameter estimation process for 7,,(V;) and 7,(V;) at various

voltage step protocols

Table 1: Different voltage step protocols for the estimation of 7, and 73,

estimation 1 estimation 2 estimation 3
Viota [mV] -92 -68 -20
Viase [mV] -94 -94 -88
interval [mV] 8 8 8
stepnum 10 10 10

Appendix A in Fig. 7 3. If the difference between V},,;q and the corresponding
voltage step is larger, we get more reliable results (for example in the case of
estimation 3, which uses a higher V},,;4 of -20 mV gives better results in the

lower voltage ranges). This means that if possible, it is worth to complete

3In the example detailed in Appendix A, the same activation/inactivation characteris-

tics were used, as defined in 4.1.1)
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Figure 4: Interpretation of VC protocol parameters Vioid, Viase, interval and steppum

the voltage step protocol with both a lower, and a higher holding potential.

4.2. Comparison with other methods

The above proposed parameter estimation algorithm was compared with
two other local parameter estimation methods developed for voltage-clamp
based estimation. The method of Lee at al., proposed in [28], and the method
of Willms [26] have been chosen for this purpose.

4.2.1. Comparison with other local methods
Initial information. The method proposed in [28] is based on the analytical
expression of the derivative of the current (which has to be zero in the ex-
tremum). Therefore, this method assumes that there is a local extremum in
every current curve (as it is shown Appendix A, this is not always the case),
which can be determined accurately. The other apriori information that is
needed for the application of this method is the same as for our proposed
approach (i.e. known steady state currents and an interval where at least one
of the activation or inactivation curve is non-zero).

The ’full trace’ method described in [26] simultaneously estimates M, oo

and 7,,, 7, from a given trace. Here it is assumed, that the maximal con-

26



ductance value of the channel is known (or it has been estimated efficiently

prior to the estimation of my,, he and 7, 7).

Computational efficiency and accuracy. For the comparison of estimation
accuracy and computational time, the benchmark problem proposed in [28|
was used. The parameters and equations of the hypothetical ion channel,
used as benchmark problem can be found in appendix B.

The steady state activation and inactivation values (ms, and h,) were es-
timated at every 10 mV from -50 to 50 mV (except at 0 mV, where no current
flows, due to E = 0 mV'). In the case of all algorithms, the corresponding
error function was minimized with the Nelder-Mead simplex method. The
stopping conditions of the simplex based optimization were the same as in sec-
tion 4.1.1. The estimated and nominal values of the activation/inactivation
functions and of the voltage dependent time constants are depicted in figures
5 and 6.

Table 2 summarizes the results of the comparison. In the table the re-
quired total computational time T (corresponding to the estimation of ac-
tivation/inactivation parameters and time constants) is indicated together
with the mean error of the activation/inactivation characteristics (E,.) and
voltage dependent time constants (E,). The estimation algorithms were run
in MATLAB on a standard dual-core desktop PC (3.2 GHz, 2 GB RAM).

In conclusion of the comparison we can say, that if the values of the
steady-state currents are known, it is suggested to use the method proposed
in this article to estimate the activation/inactivation curves (which requires
usually only 2-3 s). For the estimation of 7,, and 73, if local extremum is

present in the current trace, the method proposed by Lee can be suggested,
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Figure 5: Estimation results of the activation and inactivation functions ms, and ho, by
various methods: The decomposition method proposed by this article (est?), the method

of Lee et al. (est'’) and the method of Willms (est™W).
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Figure 6: Estimation results of the voltage dependent time constants 7, and 7, by various
methods: The decomposition method (proposed by this article), the method of Lee et al.
and the method of Willms.

for which the previously determined m,, and h., can be used as initial values.
If no local extremum is present in the current trace, the proposed method

can be used to determine 7, and 7;,. Furthermore, as shown in section 4.1.2,
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Table 2: Comparison of the computational efficiency and accuracy

Method Te [sec| | Eu |%] | Er %]
decomposition method 70 0.002 1.36
Lee 8 1.057 1.288

Willms 252 0.591 2.145

if we complete the measurements and the estimation with both a lower and
a higher holding potential, the reliability of estimation results may improve

significantly.

4.2.2. Relation to global methods

In this article we have assumed one ion channel. As mentioned, in this
case the conventional estimation methods, which are based on fitting expo-
nentials on the current trace (see [28] and [26]) can be used to determine
useful initial conditions for the analyzed local techniques. In the analyzed
cases, £25% error in the initial guess ensured the convergence of local meth-
ods to the nominal values. It is however possible in general that the proposed
local methods converge only to a local minimum. In this case the application
of global optimization methods may be a solution. These methods require
larger computational effort in general (e.g. the differential evolution - DE -
algorithm, which outperforms simulated annealing and the genetic algortihm
[29, 30, 31] in the estimation of HH models, requires 57 minutes in the case
of 14 voltage steps assuming a potassium channel with one activation gate on
a similar plattform), but they reliably find the nominal values in most cases,

even when the difference of initial conditions and the nominal value is about
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one order of magnitude. In contrast, according to our results the reliability
of the proposed decomposition method (which means the convergence to the
nominal values) is above 95% in the case when the initial parameter values
are £25% of the nominal values, while we assume £50% or £75% error in
the initial guess, the reliability of our algorithm is decreased to 70 and 33 %
respectively.

While the proposed decomposition method needs typically about 400-
800 iterations for the estimation of g, ms and h, (which mean iterations
with low computation demand as only the computed steady-state currents
are compared with the measured ones), and about 40-60 iterations for the
estimation of 7, and 7, for each voltage step (which demand more computa-
tional effort, as in this case the whole traces are compared), the DE algoritm
typicaly demands about 300 iterations (in this case, in each step whole traces
are compared for multiple voltage values and multiple individuals, which ex-
plains the higher resulting running time).

Furthermore, if we consider multiple ion channels, the convergence prop-
erties of local methods significantly deteriorate, regarding both the estima-
tion of g/muo/he and 7, /7.

In general, the application of global optimization methods, like the DE,
can be unavoidable, if we consider multiple channels, or if the prior knowledge
regarding the parameter values is limited. Although the estimation problem
and the modeling assumptions are not completely identical in the two cases,
our results support the findings in [31] that an input of multiple voltage steps

is required for the safe determination of model parameters.
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5. Conclusions

The identifiability properties of a simple ion channel model used in Hodgkin-
Huxley type neuron models were investigated in this paper using computer
algebra methods. Two approaches, the differential algebraic method and the
algorithm based on the Taylor series expansion of the output were applied to
investigate structural identifiability. Both methods require the symbolic so-
lution of nonlinear equations to get identifiability results. The identifiability
analysis with both methods concluded that the two steady-state parameters
(Moo, hoo) and the conductance (g) are not globally identifiable together.
Moreover, no pair from these three parameters are identifiable.

Moreover, it was shown that the two methods usefully complement each
other in the identifiability analysis. The differential algebra method resulted
in a regression form model and an objective function that is convex in the
tranformed parameters. The Taylor series expansion method clearly showed
that no pair from the parameters ps, ps and ps is globally identifiable.

Based on the results of the identifiability analysis, a novel optimization-
based identification method is proposed and demonstrated on in silico data.
The proposed method is based on the decomposition of the parameter es-
timation problem into two parts. The first step includes the estimation of
the maximal conductance value and the activation/inactivation characteris-
tics from the values of steady state currents obtained from multiple voltage
step traces. The second step of the parameter estimation problem performs
parameter estimation of the voltage dependent time constants. According to
the results of the identifiability analysis, this step can be done locally, if the

steady state values of the activation/inactivation variables corresponding to
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the actual voltage value are known.
The results of the article are used to formulate explicit criteria for the

design of voltage clamp protocols which are the following.

1. The voltage steps should be long enough to ensure that the activation
and inactivation variables are able to (at least approximately) reach
their steady state values.

2. At least 10 voltage steps are required for the safe estimation of the
investigated 5 parameters corresponding to the activation, inactivation
curves and conductance values.

3. To provide a reliable estimation of the time constants in the wide volt-
age range, the measurements have to be completed both with a higher

and a lower holding potential.

One possible generalization of the parameter estimation problem would
be the addition of further ion channels of similar or different type, and the
inclusion of different powers of activation and inactivation variables in the
current equations. From an optimization point of view the inclusion of pow-
ers of activation and inactivation variables would lead to a mixed-integer
problem.

In addition, the identifiability analysis of the kinetic description of HH
models (see e.g. [26]) would be a natural extension of the work described in

this paper.
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Appendix A: Example showing the lack of global identifiability

In this appendix, we show a physically meaningful example that illustrates
the non-global identifiability of the ion channel model with respect to the
three parameters (namely, g, m,, and hs) that often have to be estimated.
Other model parameters are assumed to be known. In addition, this example
also demonstrates the scenario, when a local maximum in the current trace
(assumed in [28|) does not appear.

First, it will be shown that our model can produce exactly the same
output for different parameter/initial condition values during the voltage

step protocol. The solution of the state equation in this case is given by

1 (t) = pa + (21(0) — po)e ™

29(t) = pa + (22(0) — pa)e P, (41)

from which the output current is computed as

y(t) = pski(pz + (21(0) — pz)eimt)(m + (22(0) — p4)€7p3t)- (42)

Now, let us scale the model parameters with a positive scalar \ as follows:
P5 = A - po, and pf = p;/A. Furthermore, let us choose the initial values of
the state variables as 27(0) = X - x1(0), 25(0) = 22(0). The output of the

modified model is then

y'(t) = pskizias

= k1p3(ps + (27(0) — p3)e ") (ps + (23(0) — pa)e ) (43)
= /ﬁ%()\pg + (Az1(0) — )\p2)e*p1t)(p4 + (22(0) — p4)efp3t)
=y(t)
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from which it is clear, that the scaled model generates exactly the same
output as the original one. The circumstances of the above case are not
very likely to hold in the case of a standard voltage clamp protocol, where
the voltage is held at an other constant value (the holding potential V},q)
before the voltage step. The holding potential determines the initial values
of the differential variables: x;(0) = m(0) = Moo (Vhoa) and z5(0) = h(0) =
hoo(Vhoa)). However, the scenario is not impossible, as we will show below.

Using two fictitious neurons, we will now show that the measurable cur-
rent responses of a voltage step during voltage clamp measurement can be
identical in the case of different parameters.

Let us suppose that both neurons to be compared here inhibit only one
ion channel, and the activation and inactivation characteristics of the first

neuron are described by

s (V) = (1 +eap (Vl/zljim_vwl (44)

=m0

The parameter values for the two neurons can be found in Table 3. The

other parameters in the case of both neurons were the following

heo = 0.75, Viraem = —78mV, o, = 34, c4mn = 8.7ms,
Com = 0.8ms, E = —-93mV, Vijgern = —23mV

op = 24, can = 6.9ms, cp, = IMs. (45)

As it is shown in Fig. 7, the value of m, is 0.35 at -40mV and it is 0.20

at -50mV. At the same time, the value of m}_ of the second neuron is 0.525
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Table 3: Parameters of the two neurons

No Vi/2m om, Vijon Ep, g
1 |-31.932 mV | 13.033 | -44.354 mV | -5.139 67 nS
2 | -41.056 mV | 10.555 | -44.354 mV | -5.139 | 44.67 nS

0 ; SR ;
-100 -50 0 50
V [mV]

Figure 7: Voltage dependencies of the steady activation and inactivation state functions

Moo, My, and b —h5

at -40mV and 0.30 at -50mV. The inactivation curve corresponding to h.,
was the same in both cases. We applied a holding potential of -40 mV and a
voltage step to -50 mV at t=100ms.

The comparison of trajectories of activation and inactivation variables
and the output are depicted in Fig. 8. The figure clearly shows that the
outputs are identical in the two cases, although the parameters of the two

models are different.
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Appendix B: benchmark example for the comparison of estimation

methods

A hypothetical ion channel was considered, described by the following

equations:

B 1 i 1
Cldeap(—5FY) T Lhen (550)

95 3em (_ (%@‘V))v 7 = 105 — 45exp (— (%)j

dm  me(V)—m dh  ho(V)—h
7y 17 el ey I =gmh(V —E) (48)

and g = 0.5mS/cm? and E = 0mV.

Moo

The parameters were taken from [28].
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