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1 Motivation and aim

Systems biology [1] is an emerging interdisciplinary branch of science that
aims to study and computationally describe the interactions and interaction
networks in biological systems. The models resulting from this approach
can be used to explain dynamical mechanisms and phenomena, and for gain-
ing predictions corresponding to the behavior of the system of interest. One
of the most important and interesting known complex biological systems is
the female reproductive neuroendocrine system, were the buzzwordcomplex
[2, 3] corresponds not only to the number of interacting elements and the
number of interactions, but also to the wide range of time scales involved in
the processes.

Dynamical models, which represent essential tools of the methodology of
systems biology, have been already used to describe dynamical phenomena
in neuroendocrinology, eg. mating-induced prolactin rhythm [4], dopamine
synthesis and release [5] or membrane dynamics of magnocellular neurose-
cretory cells [6].

During my research I focused on two interesting fields of neuroendocrine
modelling [7] and model analyis, where new biological results of the recent
decade opened the way for the possibility of mathematical description and
engineering analysis of new dynamical paradigms. Regarding the synthesis,
identification and analysis of the applied models, in addition to the systems
biology approach, engineering principles and methods are used in this inter-
disciplinary field.

The first topic of interest was the dynamical description of convergent
signaling pathways corresponding to rapid (G-protein coupled) and slow (β -
arrestin coupled) transmission [8, 9].

Until the 2000s the most accepted classic paradigm of signaling, related
to G protein coupled receptors, has been that the significantly important el-
ements which contribute to information transfer into the internal system of
the cell are theα andβγ subunits of G proteins (see the review [10]). In
recent years it has been shown thatβ -Arrestins not only take part in recep-
tor desensitization [11], and attenuation of G protein coupled signaling, but
they do form an endocyctic protein complex, which initiates a G protein inde-
pendent transmission and regulation of ERK [12, 13, 8, 14, 9], an important
kinase, playing central role in the intracellular signaling network (ERK is
also activated by G protein coupled pathways). The recognition, that a sin-
gle receptor acts as multiple source of signaling pathways and various drugs
bind to this receptor, might influence each of this pathways (in contrast to
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pathway-specific drugs like Lithium in the case of dopamine signaling [15]),
led to the reassessment of the efficacy concept [16].

These recent biological findings opened a way for constructing dynamical
models [7], which are able to describe the interaction of the two convergent,
but qualitatively different signaling mechanisms. Thesis 1 deals with this
topic. The proposed model is constructed in strict reaction kinetic form (gov-
erned by the mass action law), in order to stay in a model class for which the
deficiency-based multistability-related results of Feinberg et al. [17, 18,19]
can be applied.

The second field of interest, which is aimed in my work, is the electrophys-
iological modelling of Gonadotropin-releasing hormone (GnRH) neurons.
GnRH is secreted in the hypothalamus in a pulsatile way [20], with inter-
pulse intervals varying on the scale of 8-240 minutes. The anterior pituitary,
in response to GnRH, secretes hormones as well in a pulsatile way to stim-
ulate the growth and development of ovarian follicles: Follicle-stimulating
hormone (FSH) and luteinizing hormone (LH). In addition to some other
regulation mechanisms, the ovarian hormones feed back to the hypothalamus
and also to the pituitary. Via the multiple feedback loops connecting these
endocrine and neuroendocrine tissues, the system of hypothalamic, ovarian
and pituitary hormones regulates and maintains the menstrual cycle in adult
women.

With the application of cell marking based on the green fluorescent pro-
tein (GFP) and transgenic mice, the targeted measurements and electrophys-
iological experiments on GnRH neurons became available [21, 22]. Based
on such electrophysiological data recorded from GnRH neurons, the math-
ematical description of the electrophysiology of this important cell became
possible.

Furthermore, while the application of the Hodgkin-Huxley model class
is widespread and dominant in the literature of computational neuroscience,
and several papers have been published about the parameter estimation of
such models, there is a lack of articles in the literature, which aim theanalysis
of the identifiability properties of this important system class. Theses 2 and
3 of my work are related to the questions of identifiability and parameter
estimation of neuronal models.
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2 Materials and Methods

Dynamical systems [23], described by the mathematical apparatus of nonlin-
ear ordinary differential equations (ODEs), are widely used for the descrip-
tion of models in the field of systems biology and computational neuroscience
[24]. This work is also based on the application and analysis of such ODE
models.

2.1 Reaction kinetic systems with mass action law kinetics

As mentioned before, the model corresponding to Thesis 1, which describes
G protein dependent and independent signaling, belongs to the class of re-
action kinetic systems. In the case of reaction kinetic models, we consider
a system ofn chemical species participating in anr reversible steps reaction
networkin a closed system under isothermal and isobaric conditions:

n

∑
i=1

αi j χi ⇆

n

∑
i=1

βi j χi f or j = 1, ...r (1)

where the integersαi j ,βi j ∈ N are the stoichiometric coefficients for specie
χi in the reaction stepj. The r stoichiometric vectors are defined asνi j =

βi j −αi j . The reaction rate in each reversible step is assumed to obey the
Mass Action Law [17]:

Wj = k+
j

n

∏
i=1

x
αi j

i −k−j
n

∏
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x
βi j
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wherek+
j andk−j are the constants of the direct and of the inverse reaction

rates of thej-th reaction step. The concentration vector of species is repre-
sented byx where the componentxi ≥ 0 is the concentration of the specie
χi.

Reaction kinetics equations that describe the evolution of the states in time
can be expressed in matrix notation:

ẋ = N ·W (3)

whereN ∈ R
n×r andW ∈ R

r×1 are the matrices of stoichiometric vectors
and the vector of reaction rates, respectively.

The linear combination of species defined by the stoichiometric vectors
are called complexes.
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Reaction schemes

For graphical representation of the kinetic system,reaction schemescan be
used, which describe the structure of the enzymatic and non-enzymatic re-
actions in a compressed way (not depicting every single reaction). Reaction
schemes can be depicted usinghypergraphs in mathematical terms, where
the edges may be adjacent to more than two vertices. The vertices of a re-
action scheme correspond to the non enzymatic complex type components,
while the hyper-edges describe chemical reactions (not necessarily reaction
steps!). An enzyme-catalytic reaction corresponds to a pair of hyper-edges
with different directions both adjacent to three components S, P and E (being
the substrate, product and enzyme, respectively). The reaction scheme of the
model presented in Thesis 1 can be found in Figure 1 (see section 3).

2.2 Hodgkin-Huxley type mathematical modeling of membrane dynam-
ics and ion channels

Hodgkin-Huxley (HH) models, which stand for the most widely used model
class in computational neuroscience, are nonlinear electric circuit models,
composed of parallel voltage dependent (and possibly voltage independent)
conductances, which refer to various type membrane currents.

V
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ENa EK EK

gKgA gT

ECa
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gleak Na

ENa
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ECa

gleak K

EKEK

gM

Figure 1: Parallel conductance model of the GnRH neuron (described in Thesis 3), with con-
ductances representing different ion channels in voltage dependent and independent manner.
gNa denotes the sodium conductance,gA, gK andgM denote the A-type, delayed rectifier and
M-type potassium conductances,gT , gR andgL stand for the conductances related to T-type
low voltage activated and the R and L-type high voltage activated calcium currents,gleakNa

andgleakK correspond to the voltage independent leakage currents.

The general HH model is based on the description of ionic currents in the
following form:

Ii = gim
pmi
i hphi

i (V −Ei) (4)
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whereIi is the current of thei-th channel,mi andhi are the corresponding
activation and inactivation variables on the powerspmi andphi, which corre-
spond to the number of independent subunits of the voltage channel protein.
V is the membrane voltage andEi is the reversal potential of the correspond-
ing ion.

The dynamics of the activation and inactivation variables are described by

dmi

dt
= (mi∞(V)−mi)/τmi(V),

dhi

dt
= (hi∞(V)−hi)/τhi(V) (5)

wheremi∞(V) andhi∞(V) denote the voltage dependent steady state values
of activation and inactivation variables, andτmi(V) and τhi(V) denote the
voltage dependent time constants.

The voltage dependence of the steady state activation/inactivation func-
tions is usually described by Boltzmann-functions in the form of

(

1+exp

(

V1/2−V

k

))−1

where the parametersV1/2, k can be different regarding the activation/inactivation
variable of the corresponding current. The voltage dependence of the time
constants is usually described by Gauss functions

cb +caexp

(

−
(VMax−V)2

σ2

)

where the values ofcb, ca, VMax, σ depend similarly on the current and the
variable.

2.3 Identifiability and model parameter estimation

Once the model structure is fixed, the next key step of the modelling process
is parameter estimation the quality of which is crucial in later usability of
the obtained model (see [25]). The identifiability properties of the system
describe whether there is a theoretical possibility for the unique determina-
tion of system parameters from appropriate input-output measurements or not
[26, 27]. The study and development of differential algebra methods, that are
used for identifiability analysis, contributed to the better understanding of im-
portant system theoretic problems [28]. However, the analytic determination
of identifiability properties may be a very difficult task beyond a certain level
of system complexity.

Identifiability studies described in Thesis 2 are carried out with the aid of
computer algebra packages (see eg. DAISY [29]). The parameter estimation
of the G protein signaling model detailed in Thesis 1 was based on litera-
ture data, while the GFP (green fluorescent protein) based whole-cell patch
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clamp electrophysiological recordings, which were used for the identifica-
tion of the GnRH neuronal model detailed in Thesis 3, were completed in the
Laboratory of the Department of Endocrine Neurobiology (Institute of Ex-
perimental Medicine Hungary). The parameter estimation of the G protein
model with slow transmission was carried out with the Nelder-Mead sim-
plex method [30], while the optimization procedure of the GnRH neuronal
model was completed using the asynchronous parallel pattern search (APPS)
algorithm [31], which can be efficiently implemented in parallel or grid envi-
ronment.

In general, two basic measurement protocols are used for parameter esti-
mation of neuronal models: thevoltage clamp (VC) protocol, when the volt-
age is fixed and the transmembrane currents are measured, and thecurrent
clamp protocol, in which case an arbitrary value of injected current to the
cell is fixed. In the case of current clamp, the time evolution of the voltage
can be calculated as a function of the membrane currents

dV
dt

= −
1
C

(∑
i

Ii) (6)

where C is the membrane capacitance, andIi denotes the currents with voltage
dependent and independent conductance.
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3 New scientific results

The main scientific contributions of the dissertation are summarized in the
following theses.

Thesis 1ODE models of intracellular signaling pathways: rapid and slow
transmission
(Chapter 2,[P1], [P3])
A simplified dynamic model has been developed for the description
of the dynamic behavior of G protein signaling, which takes into ac-
count the effect of slow (β -arrestin coupled) transmission, RGS medi-
ated feedback regulation and ERK-phosphatase mediated feedback reg-
ulation. The parameters of the model have been determined via numer-
ical optimization.

It has been shown, that the proposed reaction kinetic model of the sys-
tem gives rise to an acceptable qualitative approximation of the G pro-
tein dependent and independent ERK activation dynamics that is in good
agreement with the experimentally observed behavior.

Figure 2: The reaction scheme of the kinetic model describing fast (G protein coupled) and
slow (β -arrestin coupled) transmission)

8



Thesis 2 Identifiability analysis of Hodgkin-Huxley type neuronal models
(Chapter 3,[P6])
I analyzed the identifiability properties of a single Hodgkin-Huxley type
voltage dependent ion channel model under voltage clamp circumstances.
With formal identifiability analysis, it was shown that even in the sim-
plest case when only the conductance and the steady state activation and
inactivation parameters are to be estimated, no identifiable pair from the
three can be chosen.

In addition, a possible novel identification method was proposed, which
is based on the decomposition of the parameter estimation problem in
two parts. The first part includes the estimation of the maximal conduc-
tance value and the activation/inactivation parameters from the values
of steady state currents obtained from multiple voltage step traces. The
use of steady state currents allows the estimation of the first parameter
group independently of the other parameters. This parameter estimation
problem results in a system of nonlinear algebraic equations, which was
solved as an optimization problem.

The second part of the parameter estimation problem focuses on the
parameters of the voltage dependent time constants, and is also formu-
lated as an optimization problem. The parameter estimation method is
demonstrated on in silico data, and the optimization process was carried
out using the Nelder-Mead simplex algorithm in both cases.

The results of the analysis were used to formulate explicit criteria for
the design of voltage clamp protocols.
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Thesis 3Hodgkin-Huxley modelling of GnRH neuronal electrophysiology
(Chapter 4,[P2], [P4], [P5], [P6], [P7])
I performed studies including the application and analysis of Hodgkin-
Huxley modelling methods.

A simple, one compartment Hodgkin-Huxley type electrophysiological
model of GnRH neurons has been presented, that is able to reasonably
reproduce the voltage clamp traces, and the most important qualitative
features in the current clamp traces, such as baseline potential, depo-
larization amplitudes, sub-baseline hyperpolarization phenomenon and
average firing frequency in response to excitatory current observed in
GnRH neurons originating from hypothalamic slices.

The parameters of the model have been estimated using averaged VC
traces of multiple GnRH neurons, and characteristic values of measured
current clamp traces. Regarding the resulting parameter values, in most
of the cases a good agreement with literature data was found.

Modification of model parameters makes the model capable of bursting,
the effects of various parameters to burst length have been analyzed.
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Figure 3: Simulated current clamp traces and various lengthbursts of the proposed model
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Figure 4: Measured and simulated voltage clamp traces
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4 Publications related to the theses

Journal papers

[P1] D. Csercsik, K.M. Hangos and G.M. Nagy, "A simple reaction kinetic model of rapid
(G protein dependent) and slow (β -Arrestin dependent) transmission,"Journal of The-
oretical Biology, vol 255(7), pp. 119-128, 2008, doi:10.1016/j.jtbi.2008.07.032 IF:
2.454 (Thesis 1)

[P2] D. Csercsik, I. Farkas, G. Szederkényi, E, Hrabovszky, Zs. Liposits and K.M. Han-
gos, "Hodgkin-Huxley type modelling and parameter estimation of GnRH neurons,"
BioSystems, vol 100, pp. 198-207, 2010,
doi:10.1016/j.biosystems.2010.03.004 IF: 1.477 (Thesis 3)

Conference papers

[P3] D. Csercsik, K.M. Hangos, Gy.M. Nagy "Reaction kinetic models of rapid (g-protein
dependent) and slow (beta-arrestin dependent) transmission," Conference Abstract:
Proc. IBRO International Workshop on Complex Neural Networks,"From synaptic
transmission to seeing the brain in action,"24-26 January Debrecen, Hungary, 2008.
(Thesis 1)

[P4] D. Csercsik , G. Szederkényi., K.M. Hangos and I. Farkas: "Parameter Estimation of
Hodgkin-Huxley model of GnRH neurons,"Proceedings of the 9th International Phd.
workshop: Young Generation Viewpoint, October 1 - 3, Izola, Slovenia, 2008. (Thesis
3)

[P5] D. Csercsik , G. Szederkényi., K.M. Hangos and I. Farkas: "Model Synthesis and Iden-
tification of a One-Compartment Hodgkin-Huxley Type GnRH Neuron Model,"Fron-
tiers in Systems Neuroscience. Conference Abstract: 12th Meeting of the Hungarian
Neuroscience Society.doi: 10.3389/conf.neuro.01.2009.04.106 (Thesis 3)

[P6] D. Csercsik , G. Szederkényi., K.M. Hangos and I. Farkas: "Dynamical Modeling and
Identification of a GnRH neuron,"MCBMS’09 7th IFAC symposium on Modelling and
Control in Biomedical Systems, August 12-14, Aalborg, Danemark, 2009 (Thesis 3)

[P7] D. Csercsik , G. Szederkényi., K.M. Hangos and I. Farkas: "Model Synthesis and
Identification of a Hodgkin-Huxley-Type GnRH neuron model,"ECC’09 European
Control Conference, August 23-26, Budapest, Hungary, 2009 (Thesis 3)

[P8] D. Csercsik , G. Szederkényi. and K.M. Hangos: "Identifiability of a Hodgkin-Huxley
type ion channel under voltage step measurement conditions," 9th International Sym-
posium on Dynamics and Control of Process Systems, July 5-7, Leuven, Belgium,
2010 (Thesis 2)
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Simple Nonlinear Limb Model,"Proceedings of the 3rd European Medical and Bio-
logical Engineering Conference, Prague, Czech Republic , November 20 - 25, 2005.

[E2] D. Csercsik, G. Szederkényi., "Cascade Control Methods of a Simple Nonlinear Limb
Model," Proceedings of the 7th International Ph.D. Workshop: Young Generation
Viewpoint, Hruba Skala, Czech Republic, September 25 - 29, 2006.

[E3] D. Csercsik, "Simple Dynamical Gamma-loop Models,"Proceedings of the 2nd Biomed-
ical Engineering Conference of Young Biomedical Engineers and Researchers, July 19
- 21, 2006 - Kladno, Czech Republic. Lekar a Technika 2:308-314, 2006.
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International Conference Modelling, Identification and Control, February 12 - 14, -
Innsbruck, Austria p. 369-374, 2007.
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musculoskeletal models with reflex circuits,"Proc. EUROSIM 2007(B. Zupanic, R.
Karba, S. Blazic), no. TH-1-P4-5, ISBN: 978-3-901608-32-2, September 9-13, Ljubl-
jana, Slovenia, on CD, 2007.
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5 Possible application area of results

In several disorders of reproductive system (which can be caused for eg. by
polycystic ovary syndrome [32], long lasting usage of hormonal contracep-
tives, etc.), the hormonal cycle is disturbed, or it can even disappear. In
these cases, to restore fertility, one possibility is the administration of the
key hormone GnRH, or it’s analogues to the patient. However, the oral ad-
ministration of such medicines implies a slow imbibition, which can lead to
unwanted side effects: After publication of a study that showed increased risk
of ovarian cancer in women who used clomifene longer than 12 months the
Committee on Safety of medicines in the UK has recommended that women
should not take clomifene for longer than six months. One possible solution
to this problem may be the application of portable GnRH pumps, which are
able dose the medicines in a pulsatile way directly into the blood, achieving
a time-concentration profile close to the physiological. However, the optimal
usage of these devices would require a feedback, which takes the dynamics
of the drug effects into account. Models like the one provided in Thesis 1,
may help in the development and application of such devices.

In addition to the significance of arrestins and slow transmission in GnRH
signaling, the importance of the slow transmission becomes evident nowdays
in more and more fields of physiology and medicine. Health experts refer
to diabetes mellitus as the disease of the future. According to the statistics
of the World Health Organization (WHO) an increase of the adult diabetes
population from 4% (in 2000, meaning 171 million people) to 5.4% (366
million worldwide) is predicted by the year 2030. Several new results point
to the possibility, thatβ -arrestins play a central role in diabetes mellitus and
insulin resistance [33, 34, 35].

The identifiability analysis, and parameter estimation method proposed in
Thesis 2 can be used in the synthesis and identification of neuronal models.
Furthermore these results provide bases for the future design of voltage clamp
protocols in electrophysiological measurements dedicated to computational
modelling.

The neuronal model of GnRH electrophysiology presented in Thesis 3 is
intended to be later used in hierarchical models describing the hypothalamic
GnRH pulse generator structure. A physiologically relevant model of the
GnRH pulse generator would significantly enhance the usefulness of mathe-
matical models corresponding to the reproductive neuroendocrine cycle. In
addition such models can be applied in computational studies of neuronal in-
teractions. A composite model of 2-3 neurons would be able to describe and
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study many kinds of interactions, including for example endocannabinoid
signaling.
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