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Tartalmi kivonat
Dinamikus modellezés és modellanalizis a neuroendokrinoldgiaban

Ezen disszertacio els®dleges célja hogy az utébbi évtizeddyiai kutatasai soran
elért néhany fontos eredményt allapottér modellek segitpével a biologiai rendszer-
elmélet keretei kozé helyezzen. Tovabbi cél, hogy egy, albgiai modellezésben szé-
leskdrben elterjedt modellosztaly identi kalhatosagi tlajdonsagaival kapcsolatban
eredményeket fogalmazzon meg. A tézisben részletezett @hdsznalt matematikai
modellek a k6zénséges di erencialegyenletek (ODE) korélertoznak, a modellek
paraméterei optimalizacios eljarasokkal kertilnek meghabzasra.

Els®ként egy, a gyors (G protein csatolt), és lassu -arresztin csatolt) jelat-
vitelhez kapcsolédé modell keril bemutatasra. A javasolt adell alkalmas a két
konvergens, de kvalitative killénb6z® jelatviteli Utvonakblcsdnhatasanak, emellett
a jelatvitel RGS és ERKP fligg® szabalyozasi mddjainak leiéia. A modell szimu-
lacios eredményei az ered® G-protein fligg® és fuggetlen ERtaohika tekintetében
jO egyezést mutatnak a kisérleti meg gyelésekkel.

Méasodsorban, mig a Hodgkin-Huxley tipusu modellek osztalyszéles kdrben el-
terjedt, és dominans az elméleti idegtudomany irodalmabakézismertek az olyan
tanulmanyok, melyek ezen fontos modellosztaly identi kdlatésagi tulajdonsagainak
analizisét tfznék ki célul. Ebb®I kifolydlag egy Hodgkin4tkley tipusi feszliltség-
flugg® ioncsatorna identi kalhatdésagi tulajdonsagait viggaltam voltage clamp mérési
modszert feltételezve. Az identi kalhatosagi eredményekikrében egy Uj identi ka-
cios eljarast javaslok, mely a paraméterbecslési probléndakompoziciéjan alapul.
A vizsgalat eredményei kozvetlenil alkalmasak Uj kritérimnok megfogalmazasara a
voltage clamp mérési eljarasok tervezésének tekintetében

Harmadrészt, a dolgozat a GnRH neuronok modellezésének ésapaeterbecs-
lésének kérdéseit vizsgalja egy egyszery, egy komparttrierrendelkez® Hodgkin-
Huxley tipusu elektro ziologiai modell segitségével, mghypothalamikus szeletben
talalhaté GnRH neuronok voltage clamp gorbéinek és a currestamp gorbék leg-
fontosabb tulajdonséagainak (nyugalmi potenciél, depolaaciés amplitido, akcios
potencial utani hiperpolarizacio, atlagos tizelési frelencia ingerl® aram hatasara)
reprodukcidjara képes. A modell paramétereinek valtoztasaval, ami a nyugalmi
potencial emelkedéséhez vezet, a modell képessé valik asbitésre. Vizsgalatra
kerll a kulonféle paraméterek hatasa a burst hosszara.



Abstract
Dynamical modelling and model analysis in neuroendocrinolgy

The primary goal of this dissertation is to put certain impotanat recent biological
results of neuroendocrinology into the framework of systesbiology by constructing
and using dynamic state-space models. A further aim is to prmle results corre-
sponding to the identi ability properties of a system classvidely used in biological
modelling. The models detailed in this thesis are ordinaryi@rential equation
(ODE) models, the parameters of which are determined via optization methods.

At rst, a model is provided for the description of convergensignaling pathways
corresponding to rapid (G protein coupled) and slow (-arrestin coupled) transmis-
sion. The proposed model is able to describe the interactiaf the two convergent,
but qualitatively di erent signaling mechanisms, as well a the RGS and ERKP me-
diated regulation of signaling. The simulation results shw that the model gives rise
to an acceptable qualitative approximation of the G proteirdependent and indepen-
dent ERK activation dynamics that are in good agreement with the experimentally
observed behavior.

At second, while the application of the Hodgkin-Huxley modelass is widespread
and dominant in the literature of computational neurosciece, there is a lack of
articles, which aim at the analysis of the identi ability properties of this impor-
tant system class. Motivated by this issue, the identi abiity properties of a single
Hodgkin-Huxley type voltage dependent ion channel model der voltage clamp
circumstances are analyzed. Based on the results of idemtbility analysis, a novel
identi cation method is proposed, which is based on the deogosition of the pa-
rameter estimation problem in two parts. The results of the malysis are used to
formulate explicit criteria for the design of voltage clamprotocols.

Thirdly, problems related to the modelling and parameter g@snation of GnRH
neurons were investigated. A simple, one compartment HodgkHuxley type elec-
trophysiological model of GnRH neurons is presented, that isble to reasonably
reproduce the voltage clamp traces, and the most importantuglitative features in
the current clamp traces, such as baseline potential, depoization amplitudes, sub-
baseline hyperpolarization phenomenon and average ringefjuency in response to
excitatory current observed in GNnRH neurons originating fnrm hypothalamic slices.
Applying parametric changes, which lead to the increase ofibeline potential and
enhance cell excitability, the model becomes capable of Bting. The e ects of
various parameters to burst length are analyzed.
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Notation and Acronyms

Notation of the variables and currents of the GnRH
neuronal model

\%

Ia

I

I'm

It

IR

I
IIeakNa
IIeakK

membrane potential

A-type potassium current

delayed recti er potassium current

non-inactivating potassium current

low voltage activated C&* current

R type high voltage activated C&" current

L type (slowly inactivating) high voltage activated Ca&* current
sodium leak current

potassium leak current



Acronyms

AP Action potential

APPS Asynchronous parallel pattern search
CcC Current clamp

DAP Depolarizing afterpotential

E, Estradiol

ERK Extracellular regulated kinase

FSH Follicle-stimulating hormone

GDP Guanosine-diphosphate

GFP Green uorescent protein

GnRH Gonadotropin releasing hormone
GPCR G protein-coupled receptor

GRK G protein-coupled receptor kinase
GTP Guanosine-triphosphate

HH Hodgkin-Huxley

HVA High voltage activated

LH Luteinizing hormone

LVA Low voltage activated

MAPK  Mitogen activated protein kinase
MAPKP Mitogen activated protein kinase phosphatase
ODE Ordinary di erential equation

P4 Progesterone P,)
RGS Regulators of G protein signaling
VC Voltage clamp



Chapter 1

Introduction

Systems biology is an emerging interdisciplinary branch dfcience that aims at
studying and computationally describing the interactionsand interaction networks
in biological systems [14, 17]. The models resulting from ihapproach can be
used to explain dynamical mechanisms and phenomena, and §@&ining predictions
corresponding to the behavior of the system of interest.

To increase the clinical relevance of such models, one hasise sub-models based
on as up-to-date biological information as available, anceduce the role of empirical
and phenomenological approaches everywhere where the dogatal knowledge makes
it possible.

The work reported in this thesis presents contributions toystems biology in the
above sense: two chapters (2. and 4.) focus on systems biglogdels corresponding
to neuroendocrinology [106], and one chapter (3.) focusas methodological issues,
especially mathematical (identi ability) properties of amodel class (Hodgkin-Huxley
type models) widely used in systems biology.

Motivation: Complex nonlinear elements in the female reproductive neu-
roendocrine system. Probably one of the most important known complex biolog-
ical systems is the female reproductive neuroendocrine ®m. Here the buzzword
complex[161, 42] corresponds not only to the high number of interaog elements
and the high number of interactions (see Appendix A), but atsto the special highly
nonlinear nature of the observed dynamics.

The neuroendocrine cells in the hypothalamus secrete Gormdibpin releasing
hormone (GnRH) in a pulsatile way [166], with GNnRH pulse frequey varying on
the scale of 8-240 minutes. The anterior pituitary, in resptse to GnRH, secretes
hormones as well in a pulsatile way to stimulate the growth ahdevelopment of
ovarian follicles: Follicle-stimulating hormone (FSH) ad luteinizing hormone (LH).
In addition to some other regulation mechanisms, the ovamahormones feed back
to the hypothalamus and also to the pituitary.

Via the multiple feedback loops connecting these endocria@d neuroendocrine
tissues, the system of hypothalamic, ovarian and pituitarjnormones together with
morpological changes in the ovary regulate and maintain theenstrual cycle in
adult women. Although cycles are usually between 25 and 30ydaapart, but a
woman's normal cycle can range anywhere from 22-40 days long



One of the most exciting challenge of the reproductive neusadocrinology is
to map the connections between these time scales of weeks amdutes (millisec-
onds, if considering neuronal activity). Many results pointo the assumption, that
the understanding of this complex dynamics can not be done twout the help of
computational models [16, 21, 57, 62, 61, 129].

The aim of this work, however, is not to describe the whole repductive neu-
roendocrine system, but to focus on some important interacins and elements, and
create mathematical descriptions (computational modeldpr them, which include
the paradigms of recent biological ndings of the eld, and ty to analyse and esti-
mate them by using methods and tools of modern systems and twh theory.

Especially the issues of key elements in the GnRH system aredegissed: the G
protein signaling, which is the mechanism via the hormone tscon the gonadotropin
cells in the pituitary, and the GnRH neuron, which is responbie for the synthesis
and secretion of this important neuropeptide.

~-arrestins and slow transmission: New aspects of signaling. Signaling

through G protein-coupled receptorsGPCR s) is a well known mechanism of infor-
mation transmission in intercellular communication (seeaker section 2.1). However,
the operation of the intracellular pathways, which are conected to these receptors,
are not yet fully understood, and in the recent decade sigréant new biological

mechanisms related to these pathways have been identi ed.

The most widely accepted classic paradigm of signaling uhthe 2000s has been
that the signi cantly important elements which contribute to information transfer
into the internal system of the cell are the® and ° subunits of G proteins (see
the review [104]). This paradigm was in good agreement witth¢ classical concept
of drug e cacy in the context of receptor-occupancy theory Were the e cacy is
considered as an intrinsic property of the ligand-receptgrair [52].

One of the most important main targets of the intracellular mthways a ected
by G protein related signaling is the family of MAPK/ERK cascales [73, 90, 177],
which play a central role in the intracellular signaling nework. Proteins called G
protein-coupled receptor kinases (GRKSs) are able to rapidigrminate this signaling
response via phosphorylating the receptor, typically on st cytoplasmic tail [128].
Following phosphorylation, -Arrestins bind the receptor, which blocks further G
protein-initiated signaling.

In recent years it has been shown that-Arrestins not only take part in receptor
desensitization [50], but form an endocyctic protein com@k, which initiates a G
protein independent regulation of ERK [36, 113, 127, 8, 10].hE€ recognition, that a
single receptor acts as multiple source of signaling pathysand various drugs bind-
ing to this receptor might di erentially in uence each of this pathways (in contrast
to pathway-speci ¢ drugs), led to the reassessment of the €acy concept [52].

These biological ndings opened a way for dynamical model4(J6], which are
able to describe the interaction of the two convergent, but wplitatively di erent
signaling mechanisms. Section 2.2 is addressing this issue



Identi ability properties of the Hodgkin-Huxley model class The HH
(Hodgkin-Huxley) modelling formalism [71] of membrane cuents and cell electro-
physiology is the most widely used framework for the purpos# modelling excitable
cells. The dynamical descriptions of neuronal behavior, mging from the fundamen-
tal theoretical principles [76, 77, 78] to the wide range ofpplications with special
focus [136, 93, 133, 18, 46], are predominantly based on thisdel class.

Although several articles have been published which are fagng on parameter
estimation problem in the case of HH based models under var®assumptions (see
[145, 144, 165, 148, 102, 74]), there is a lack of literaturatd which address the
identi ability properties of such models.

Furthermore, there is a lack of a well grounded parameter astation method
that relies on the results of the identi ability analysis, and that can handle the
possibly appearing identi ability problems.

Therefore, the aim of my work reported in this thesis was to jvide a rigorous
formal identi ability analysis of a simple Hodgkin-Huxley type ion channel model,
interpret the results, and to provide a parameter estimatio method which takes
into account the arising possible identi ability issues.

Electrophysiological properties of GnRH neurons revealed through trans-

genics and GFP tagging. As mentioned before, GnRH neurons govern impor-
tant central role in the control of the reproductive neuroedocrine system. With
the application of cell marking based on the green uoresceprotein (GFP) and
transgenic mice, the targeted measurements and electrogiglogical experiments on
GnRH neurons became available [67, 142]. Another possilyilfor gaining measured
data is the application of "immortalized" GnRH neurons [119,162], so called GT1
cells. Since these methods became widespread, the eledtygmlogical features of
this important neuroendocrine cell have been studied extsively both experimen-
tally and also several mathematical models have been constted to explain the
underlying mechanisms of their properties.

Until now, the mathematical models corresponding to GnRH neaphysiology
were based mainly on data collected from immortalized GT1 ke The behavior of
these cells (eg. ring frequency, depolarization magnituek) is signi cantly di erent
compared to GnRH neurons in hypothalamic slices, which exhilprobably more
common properties compared to in-vivo GnRH neurons.

However, in recent years, based mainly on the GFP tagging nietd, signi cant
amount of experimental data has been published on the elegphysiology of GnRH
neurons [67, 138, 35, 80]. These atrticles, together with tip@ssibility of targeted
measurements can serve as a good basis for the synthesis oglantrophysiological
model of the GnRH neuron, which is able to take into account asunh as possible
from the up-to-date biological knowledge corresponding tthe ion channels and
dynamics of this unique neuroendocrine cell.

The above motivating facts let us try to construct a simple Hdgkin-Huxley type
dynamical model of GnRH cell electrophysiology based on Iiegure data published
on its various ionic currents, and estimate its parametersased on GFP based whole
cell patch clamp recordings.

10



The structure of the thesis is as follows. In chapter 2 the biological back-
ground of G protein and -Arresitn coupled signaling is summarized, and the corre-
sponding dynamical reaction kinetic model is described. @pter 3.1 introduces the
class of Hodgkin-Huxley type models of ionic currents and menal electrophysiol-
ogy, analyses the identi ability properties of one such chanel under voltage clamp
conditions, and provides a parameter estimation method bad on the results of
identi ability analysis. Chapter 4 describes the dynamichneuronal model of GhnRH
electrophysiology. The possible applications and futuregpspectives are described
in chapter 6. Appendix A gives a summary about the biology andteractions of
the female reproductive neuroendocrine system. Appendixdgscibes simulation re-
sults corresponding to a subsystem of the model described2nAppendix C details
the procedure of electrophysiological recordings of the &k neurons. The math-
ematical details of parameter estimation, and estimated pameters of the GnRH
neuronal model can be found in Appendix D.

11



Chapter 2

Dynamic models of intracellular
signaling pathways: rapid and slow
transmission

In this chapter, a dynamic computational model is presentedh the form of ordi-
nary di erential equations (ODESs), which describe the inteplay of rapid (G protein
coupled) and slow ( -arrestin coupled) transmission in the signaling proces$ BRK
activation. At rst, in section 2.1, the biological backgraund is detailed, then the
model concepts, model development (section 2.2), model siation results (section
2.3) and conclusions (section 2.4) are presented.

2.1 Rapid (G protein dependent) and slow (  -arrestin
dependent) transmission

Diverse signaling molecules, including neurotransmittey hormones, phospholipids,
photons, odorants, taste ligands and mitogens, bind to theispecic G protein-
coupled receptorsGPCR s), also known as seven-transmembrane receptors (7TMRS),
in the membrane of the target cells, which subsequently im&ct with their respective
G proteins to induce a cascade of downstream i.e. intracddm signaling.

The G proteins are heterotrimeric signaling molecules coraped of three sub-
units, ®, and °, which dissociate upon receptor-induced exchange of GDR TP
on the ® subunit (G®) to form a free G® and a dimer of G°® subunits [60, 59, 114].
Many isoforms of these subunits have been cloned in the pastays and have been
classi ed into four groups according to the subtype of thei® subunit: G®s, G&,
G®q and G®12. All these G® subunits, as well as the dissociated subunits, and
other receptor-interacting proteins are capable of initiéng diverse downstream sig-
naling pathways via second messenger molecules, such asicydviP, cyclic GMP,
inositol triphosphate, diacylglycerol, and calcium.

Activation of the signal induced by the GPCR depends on the ta at which
ligand-bound receptor catalyzes exchange of GDP for GTP orhé G® subunit.
Following exchange, GTP-boundG® dissociates, at least partially, from both the
receptor andG ° complex. The length of time thatGRGTP and G ° can interact

12



with e ectors is determined by the rate at which G® hydrolyzes GTP to GDP.
Following hydrolysis, inactive GRGDP binds G ° with high a nity, and terminates
G ° signaling. GTPase-activating proteins (GAPs) speed up thiydrolysis of GTP
by G® [174]. In this work G ° signaling events are not examined.

The novel concept of slow transmission via-arrestins has already been men-
tioned in section 1. Following GPCR activation, the ligandbind receptor can be
phosphorylated by GPCR kinases (GRKs). As described for egn [9, 8, 7] in the
case of dopamine receptors,-Arrestins bind to the receptors after phosphoryla-
tion to uncouple them from G proteins and participate in the ecruitment of the
endocytic protein complex, thus leading to an attenuation foGPCR signaling.

On the other hand, the signaling complex composed of the ligd, the receptor,
~-Arrestin2, and PP2A can dephosphorylate the protein Akt orthe site Thr308,
and initiate a G protein independent signaling cascade. Rirermore, an another
signaling complex binding to the phosphorylated receptoromposed of -Arrestin,
ERK1/2, Raf-1 and MEK can initiate ERK activation [37]. The later case, leading
to the -Arrestin dependent activation of ERK, will be in the focus othis study.

Together, the G-protein and -arrestin coupled pathways form a signaling net-
work convergent to the central target kinase ERK.

Another important mechanism contributing to the dynamics @ signaling is the
feedback regulation , about which there are only a few models available in the
literature [94, 176]. At the same time, e orts to take into acount the -Arrestin
dependent slow transmission as a second pathway convergenG protein signaling
is also not prevalent either in literature. The mechanismsfahe regulation of G
protein signaling are described in section 2.2.4 in detail.

2.2 Model developement

Much e ort has been made nowadays to nd plausible mathematal models for the
description of the general dynamics of GPCR activation [1,6B, 169, 167], ligand
e ciency [107, 25, 85] and receptor desensitization [143] order to analyze signaling
dynamics, and lay down the fundamentals of dynamical pharnsalogy [3].

To join the above mentioned e orts, the aim of this chapter isto propose a
simple (in a sense minimal) reaction kinetic model and the iplied equations for
G protein signaling, based on biochemical and physiologloabservations collected
about cell signaling pathways corresponding to a simpli edhodel of fast-, and slow-
transmission as well as the regulation of G protein signafythat is able to reproduce
the downstream activation pattern (like ERK or Akt) recently described qualita-
tively in [37]. Our modeling e ort is directed towards desdbing the dynamics, i.e.
the time evolution of the key components participating in G potein dependent and
independent signaling. This may enable us to analyze cebwlactivation in the case
of parallelly or competitively acting agonists and apply catrol theoretic methods
for nding optimal drug dosing strategies in the future.

Three model variants will be developed. The basic model debed in 2.2.1 is
able to describe ligand binding, and the cycle d&® GTP activation, deactivation
and reactivation by the ligand-bound receptor. Thereafterin section 2.2.3, we will

13



Table 2.1: Notations of species in the basic model

Specie Notation
R(G®; GDP) A
L B
R(G®; GTP)L Cy
RL D
(G®i GTP) E
(G®; GDP) F
R G

extend our model with the reactions describing receptor pephorylation by GRKs
(G protein coupled receptor kinases), which is a key issue thie slow transmission
process. Afterwards, in 2.2.4 we extend the model with the aetions describing
the two convergent pathways of ERK activation, and the RGS an&RKP-mediated
negative regulation of G protein signaling.

We aim at constructing a model in strict reaction kinetic fom (governed by the
mass action law), in order to stay in a model class for which éhde ciency-based
multistability-related results of Feinberg et al. [44, 31,32] can be applied in the
future. These results provide very strong theorems about glitative behavior of
reaction kinetic systems, based only on the structure of theeaction network, inde-
pendently of its parameters. Furthermore, these and othel$1, 152] multistability-
related results o er the possibility to explain interesting physiological phenomena
related to typical dynamic, pulsatile intercellular signds, for example, in the case of
GnRH-a ected gonadotropine cells [164], or dopamine-a eet prolactin cells [12].

2.2.1 The basic reaction structure of the G protein signaling
mechanism

The most simple reaction kinetic model of G protein signalmis constructed in this
subsection, which is able to describe ligand binding, ®activation, deactivation
and reactivation. Furthermore, the model contains the ® uncoupled ligand bound
receptor that enables to extend the model with slow transnsgon related reactions
in the following sections.

In order to simplify the form of the equations, the notationsin Table 2.1 for
species is introduced, with the notatiorC; used for complexes.

For the development of a simple mathematical model of basic @rotein sig-
naling, the reaction scheme depicted in Fig. 2.1 is used. lhé reaction schemes,
the notation is the following: Arrows between components dee transformations,
and arrows pointing to arrows denote enzymatic catalysis €e the later reaction
schemes).

It can be clearly seen from the reaction scheme in Figure 2at the model does
not describe active and inactive receptor forms, as for exahe the models detailed
in [25, 143]. The reason for this lays in the fact that in this tedy the properties

14
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Figure 2.1: The basic reaction scheme of G protein signalinghe receptor (R)
binds the ligand (L), and induces GDP -> GTP exchange. Therdter the G® GTP
subunit dissociates, and after a while the GTP is hydrolyzetb GDP. After this,
the G® GDP subunit can reassociate with the ligand bound receptor.

of the ligand corresponding to achieve conformational chges in the receptor are
not of primary interest, but the qualitative features of thetwo (G protein dependent
and independent slow transmission) signaling pathways, dnhe feedback regulation
of signaling will be in the focus. According to this aim, it ca be assumed that
conformation change of the receptor always appears aftegdind binding, and is
always followed by GDP/GTP exchange on the® subunit.

It is important to note that the primary input of the model is t he ligand con-
centration on the cell surface. Processes a ecting the camdration pro le of the
ligand such as degradation and reuptake, may be taken into @nt via the term
Lenv in€qg. 2.5. TheG® GTP, and later, in the case of the extended model, the
ERK activation corresponds to the output of the system.

2.2.2 The basic model

The basic model describes a cell together with the cell sucks and the only compo-
nent for which the system is open, is the ligand. This can be derstood as the e ect
of the cell's environment that in uences the ligand concemation on the cell surface
(if the ligand concentration in the environment rises, theijand concentration on
the cell surface will rise too0).

For all other components, the system is closed. This can besdeibed by the
following conservation equations (see notations in Table:1

2 The conservation of G protein:[G®°] = [A]+[C]+[E] +[F]
2 The conservation of receptors[R*] =[A]+[C]+[D]+[C]
2 The conservation of the ligand:[L*']=[B]+[C] +[D]

The dynamic time-dependent or state variables of the systelmre the concen-
trations of the complexes, and the reactions in the system ep the mass action
law.
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Modeling assumptions

For the reactions, the following assumptions are made:

1. One molecule of ligand can activate on&® j GDP -bound receptor, and
phosphorylate theG®; GDP to G®; GTP.

2. The G®j GTP subunit can dissociate from the ligand-bound receptor.

3. The recombination of the® and ° subunits of the G protein is considered to
be fast, and so the deactivation of the G protein is describdaly one reaction
corresponding to the hydrolysis of GTP to GDP (as in [143]). fius the G°
signaling, and ° subunits are neglected.

4. The deactivated freeG®j GDP can associate with a free receptor and form
a G®; GDP -bound receptor complex, which can be activated again by one
molecule of the ligand.

5. Phosphate required for phosphorylation reactions is ment in a great excess.

6. We do not take receptor internalization into account. Redts show that re-
ceptor internalization does not appear in many cases, for @xple in the case
of prolactin cells [51].

State equations

The state or di erential equations in the model will be deried from the reaction
equations related to the reaction kinetic model formed by # chemical reactions.
The explicit derivation of the state equations is presentednly in the case of the basic
model structure of the G protein signaling mechanism. The rtieod for deriving the
equations from the reactions via the mass action law is thersa in the case of the
later models extended with slow transmission and the reguian of signaling.

The considered reactions (using the notation in Table 2.1)a as follows.

The binding of the ligand (L) by the (G®; GDP )-bound receptor R(G® j
GDP)), and receptor induced exchange of GDP for GTP on the &and the disso-
ciation of G® is described by the following reactions:

(2.1)

The hydrolysis of G®j GTP to G®; GDP is described as
k+
E FCBSER (2.2)
ks
Following hydrolysis, inactive GRGDP binds G ° and the free receptor

k+
G+ F CEEeaas (2.3)
ki
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The dissociation of the ligand from the receptor is descriden the form
k+
D GGEGEERE (2.4)
k)

The dissociation of the receptor and the ligand before reacation of G protein is
included to secure the ability of the ligand to escape from thcycle. Because the
rst ligand binding reaction is assumed to be irreversibleand only the concentration
of the free ligand is a ected by the input (the environment'sligand concentration),
there is no other way to describe the fall of the ligand conceation on the cell
surface.

The above reactions imply the following di erential equatons by the mass-action
law:

% = i ki [Al[B]+ ki [Ci]+ kZ[G][F]i Ki[A]

% = i kI [A][B] + ki [C1]+ K; [D]i Ki[G][B]+ ks([Lenv]i [B])

T = W ABli KiICi K[+ K DIE)

% = k;[Cili ki [D]E]i k;[D]+ Kj[G][B]

T - kel wpEN KE KIF)

T = EN KDL KEIF]+ KA

% = K;[D]i K,[GIB]i k&[GIF]+ ki[A] (2.5)

The term ks([Lenv] i [B]) corresponds to the input (1) of the system, in which
U = Len denotes the concentration of the ligand in the cell's enviroment. Note
that Le,y is a function of time in general.

Simulation results of the basic model can be found in AppendB (10.1).

2.2.3 The extended model I: Receptor phosphorylation

If we want to take the concentration of phosphorylated recepr-ligand complex into
account, which initiates the G protein independent slow trasmission signaling, we
have to extend our model with three more state-variables:

2 The concentration of GPCR kinase -GRK ]

2 The concentration of activated GPCR kinase and ligand bindaceptor complex
-[GRK j RL]
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2 The concentration of phosphorylated ligand bind receptor [RL ]

We assume that the concentration of phosphorylated receptodepends only on the
concentration of GRK and on the concentration of ligand-bouwh receptors, which
can be phosphorylated by GRK-s.

For the development of a simple mathematical model of recegptphosphoryla-
tion, the reaction scheme shown in Fig. 2.2 is used.

(04 — (04

Figure 2.2: The reaction scheme of G protein signaling extéed with receptor
phosphorylation

2.2.4 The extended model II: Slow transmission and Regula-
tion of signaling

In this section the further extended model is described, wéh includes the above
detailed G-protein signaling model, the mechanism of recep phosphorylation, slow
transmission and the regulation of signaling.

As described in [37], -Arrestins that bind the receptor after phosphorylation,
can serve as sca olding molecules that facilitate cell sighing to ERK (and also to
other subgroups of MAPK proteins through MEK and Raf, as destyed in [90]).
The activation of MAPK cascades can be furthermore initiaté by a small GTP-
binding protein (smGP; RAS-family protein), which transmits the signal either di-
rectly or through a mediator kinase to the MAPK kinase (MAP3Kor MAPK 3) level
of the MAPK cascades (MAPK-s are activated by MAP kinase kinses - MAPKKs
-, which are in turn actiated by MAP kinase kinase kinases - MR3Ks or MAPK3s).
As DeWire describes in [37], with si-RNA methods and the appation of mutant
receptors, it can be shown, that the resulting ERK phosphorgtion (activation) is
composed as a result of the activation induced by G proteinsd the activation
originated from -Arrestin mediated slow transmission.

Experimental investigations show that the G protein-medited ERK activity is
maximal at 2 min after stimulation, and the -arrestin2 mediated ERK activity is
minimal until 10 min post-stimulation, but is responsible ér nearly 100% of ERK
signaling at times beyond 30 min [37].

It has also been shown [81, 89] that the regulators of G protesignaling RGS)
are basically the guanosine triphosphatase (GTPase)-atamting proteins that specif-
ically interact with G protein ® subunits. RGS proteins enhance the intrinsic rate at
which certain heterotrimeric G protein®-subunits hydrolyze GTP to GDP, thereby
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limiting the duration that ®-subunits activate downstream e ectors. This activity
de nes them as GTPase activating proteins (GAPS).

These regulator proteins display remarkable selectivityral speci city in their
regulation of receptors, ion channels, and other G proteimediated physiological
events [171]. Recent ndings show that RGS proteins selecsily regulate signaling
by certain G protein-coupled receptors (GPCRS) in cells, ispective of the coupled
G protein [122].

Furthermore, RGS proteins can change the nature of the stand end of a
signaling event, while leaving the intensity of the signalnchanged [174]. Results of
the investigation of RGS protein functioning and regulatia of G protein signaling
in yeast can be found in [69, 40].

There are multiple RGS subfamilies consisting of over 20 dirent RGS proteins.
RGS2 blocks G®-mediated signaling, a nding consistent with its potent G GAP
activity.

MAPKSs (including ERK) are feed-back regulated through map kase phos-
phatases (MAPKP orERKP ), which are able to dephosphorylate MAPK-s [15, 94].

If RGS proteins were active unrestrictedly, they would comlptely suppress var-
lous G protein mediated cell signaling, as it has been showm the over-expression
experiments of various RGS proteins. Thus, physiologicglithe modes of RGS-
action should be under some regulation. The regulation carebachieved through
the control of either the protein function and/or the subcedllar localization [75].
It can be assumed that RGS proteins (RGS2 and RGS3) are up-tdgted via the
phosphorylation of mitogen-activated protein kinases (MRK or ERK) [94].

Extension of the reaction scheme

The further step in model development is to extend the modelith the reactions

describing the MAPK/ERK activation, and to take into account the RGS-mediated
G protein feedback regulation, and ERKP mediated ERK auto-ragation. To make

our model able to describe the signaling regulation procesge extend again the set
of state variables (species) to obtain the set in Table 2.2.
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Table 2.2: Notations for the nal model

Specie Notation Specie Notation
Ri (G®; GDP) A (G®j GTP); ERK Cs
L B ERK K
Ri (G®j GTP)j L C RLy,i ERK Cy
RL D RGS L
(G®j GTP) E ERK,i RGS Cs
(G®; GDP) F RGS, M
R G RGS,i (G®i GTP) Ce
GRK H ERKP N
RL j GRK C, ERK,i ERKP C;
RL, | ERKP, o
ERK J ERKP,i ERK, Cs

Modelling assumptions

1. We assume that -Arrestin, PP2A and Akt is in great excess, and they bind
rapidly to the receptor forming the signaling complex, whitc immediately acti-
vates the second messenger cascade leading to the inductb&RK signaling.

2. The ERK signaling cascade (MAP3K, MAPKK, MAPK) is neglectal in the
case of G protein based signaling.

3. Furthermore, we suppose, that RGS proteins are activatday the active form
of ERK [94].

The phosphorylation of the ligand-bound receptor by GRK is deeribed by the
following reaction:
K k7

H + D EGGGEEEGGEEHES (2.6)
K ki
The dephosphorylation of the phosphorylated receptor is peesented by the reaction
k+
| GEEEEE (2.7)
ks

We describe the signaling process and regulation by the réiaas described in
Egs. (2.1) - (2.7) extended by the following reactions.

2 The ERK activation by (G®; GTP) and RLp through -Arrestin is described
by the reactions:

ke ki kT ki
E+ ) CCOOEEEGREEERK | + J CCLCTBEEEBeaRK
K Kig ki, ki,
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2 The ERK-mediated RGS activation and the regulation of G prota signaling
by the GAP-activity of RGS is represented by

k k¥ kK ki
K + L CGECERBGEEGEEEM M + E CCRCEIBGEEess F
kis kis kis kie

2 Finally, the following reactions are related to the deactation of ERK and

RGS:
k- ki
K G%%@@@@ M G%%m
i7 18

2 |If we also want to take into account the ERKP-mediated ERK feedack au-
toregulation shown in Fig. 2.3, we have to extend our systemitlv the following
reactions:

ki ks ks k>
K + N 6CEeERREEeEeR0 @%%@m%%@@@@
19 20 21 22

Rapid transmission ! Slow transmission
via G-proteins // via beta-arrestins
1/ /
/
N ¥
ERK.T_' ERK,

ERKP, &——= ERKP

Figure 2.3: The reaction scheme of ERK feedback autoregulation by ERKP: TheERK
proteins can be activated either by the conventional G-protein capled pathways or via slow
transmission. In both cases the activation of ERK triggers the actiation of the ERKP
regulatory protein, which enhances the activation of ERK. The sulscript , denotes the
active (phosphorylated) form of the proteins, the continual arrows indicate direct e ect,
and the dotted arrows indicate indirect e ect through other molecules

2 The deactivation of ERKP is described by the reaction

k+
0 6CEeBER
23
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R(Ga-GDP) + L g > R(Ga-GTP)L

/

R+L Lo

Goc-GTP
(G- G‘DP\/ GRK
RGSp

ERKp ——> ERK
RGS

ERKP <—_ERKPp

Figure 2.4: The reaction scheme of G protein signaling, ERK &eation and regu-
lation of signaling

The subscriptp in Figure 2.3 corresponds to the activated forms of the enzyes.
This mechanism is included in the resulting reaction schene Fig. 2.4.

Finally, the resulting reaction scheme in Fig. 2.4 summarns the structure of all
the above reactions. It is important to observe a largeRGS mediated and a small
ERKP feedback loop, which implies a cascade structure.

2.3 Model veri cation

The models described in the above sections were veri ed byrsilation. During
the veri cation process, the simulation results of the mods were tested against
theoretical expectations, and the simulation results of th extended model Il were
compared to published experimental data regarding the timevolution of ERK ac-
tivation. This section describes and discusses these rdsul

2.3.1 Simulation results

For the simulation of the extended model Il, the parametersadlected in Table 2.3
were used. The parameters were obtained via parameter estition with MATLAB
using the Nelder-Mead simplex algorithm for the best t of egerimental data of
DeWire et al. [37, 105]. The right sub- gure of Figure 2.5 and &th sub- gures of
Figure 2.6 show averaged experimental values [105], and ithempirical variances
denoted by circles. For a good t we expect the model to provealtrajectories which
remain in the intervals de ned by the experimental deviatios.
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Table 2.3: Parameter set for the nal, extended model's sinfation

Param. | Value | Param. | Value | Param. | Value
ki 100 kg 5.3019| kg, 6.2324
ki 100 ki 5.3019| ki, 0
k3 120 o 2.5539 18 0
K 0 kio 0 kig 0
k3 0.3170| ki, 8.9418| ki 0.3791
K 0 ki, 8.9418| ki, 0.3791
K 1 K1, 9.3924| k3, 0.2354
ki, 1 ki, 0 kio 0
ks 1 kis 1.2696| k3, 0.4
kL 1 kis 1.2696| ki, 0.4
kg 0.6827| ki, 1.2316| ks, 0.4325
K 0.6827| ki, 0 ki, 0
k3 0.3584| ki 5.9983| k3, 0.015
ki 0 kis 5.9983| ki, 0
kg 0.5 Kis 6.6509
K 0 Kig 0

Note that the spontaneous deactivation of RGS protein was g&cted in these
nal simulation experiments, and so the parameter&;; and kig were set to 0. The
time interval of the simulations was 60 minutes in this caseThe initial conditions
were set to describe a fully deactivated cell with all signialg activations on the basal
level.

We have to note that the sensitivity of the results with respet to certain param-
eters (eg.kj, ki, k3 ) was not high enough to obtain an accurate estimated value.
A simple sensitivity analysis of the model is described in Aqendix C.

It is important to note that if we wish to compare the resulting parameter values
to the values found in the literature, we have to denormalizevery concentration
(which is hardly feasible due to imperfect information abduintracellular protein
concentrations), and modify the corresponding rate consits to achieve the same
time patterns. This is why a simulation method with normalizd concentrations
has been used in our study to analyze only the qualitative fages of the model
structure.

The results of the simulations, i.e. the system responseseatlepicted in Figs.
2.5 and 2.6. In the left sub- gure of Fig. 2.5 the simulatedc®, RGS and ERKP
-activation pattern can bee seen. Here again, the total agated ERK concentration
Is taken into account, which includes also the complexes, ette the activated ERK
acts as an enzyme (ERKP and RGS activation). In the case of otheomponents,
the concentration of the free element is depicted. In the caof ERKP the total
active concentration is depicted (the sum of the free activenzyme and the complex
with ERK). The reason for this is that the free active ERKP concatration is not
very informative, as the enzyme immediately forms complegavith ERK.
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Figure 2.5: Activation pattern of G®; GTP, the corresponding regulators and ERK in
the case of both transmission mechanism active. The circles on thesond plot correspond
to experimental results.

The G®-activation pattern is strongly a ected by receptor phosplorylation and
ERK-induced activation of RGS-proteins, which rapidly depbsphorylate theG®j
GTP to G®; GDP.
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Figure 2.6: G protein versus -Arrestin mediated signaling. The circles correspond
to experimental results

In Fig. 2.6 we can see the ERK activation pattern correspondinto pure G
protein dependent and G protein independen®RL, (" -Arrestin) mediated signaling.
The left sub- gure of Fig. 2.6 depicts the ERK activation in the case, when no slow
transmission is taken into account. In the right sub- gure he G protein independent
signaling is illustrated.
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2.3.2 Discussion

If one wants to compare our simulation results with the expé@nental curves found
in the literature, an important observation should be madeln several articles that
reports on experiments (eg. [37]), the curves are normaligzevith the maximum
concentration observed during the measurement. The reastehind this is, that
in the case of many western-blot measurements, no informatti is available of the
remaining inactive protein pool. These "actual maximum-niomalized" curves can
be easily derived from the data of our simulation results byernormalizing the
data with the actual maximum value of the concentration-cwe. Unfortunately, a
"total quantity-normalized" curve can not be obtained froman "actual maximum-
normalized" curve, if we do not have any information about tk remaining, inactive
protein pool.

The basic model described in 2.2.1 is able to describe the ligand-induced G
protein activation in the cell, but is unable to describe regptor phosphorylation,
the regulation of signaling. Furthermore, as described ingpendix B 10.1, the fast
return of G protein activation to basal level after the stimdus also can not be de-
scribed by this model, except if we suppose very fast spontous dephosphorylation
of the G®; GTP to G®; GDP. However, in this case a smaller part of the total
G protein pool becomes activated, and a less signi cant butam-zero steady-state
is still present.

In the case of theextended model Il , it can be seen in both Fig. 2.6 and
2.5 that the G protein activation and the G protein induced ERK activation has
a pulsative maximum around 2 min, and is eliminated via the fback of RGS
activation. The G protein independent ERK activation, whichcan be related to the
RL, concentration, has a slower rising period, and remains moseable during the
simulation period.

As it can be seen in the second plot of Figure 2.5, the resultjractivation pattern,
which is in good agreement with experimental data, inherithe qualitative features
of both pathways: The rapid maxima of ERK activation at 2-3 mimutes can be
related to the G protein dependent pathway, and the remaing tonic activation
originates from the slow transmission pathway. Both the theretical considerations
and simulation results show that the resulting activation pttern of the second plot
of Figure 2.5 is not the simple sum of the activation patternglepicted in Figure 2.6,
because of the feedback mechanisms and other e ects.

We have to note again, normalized concentrations were useddause of the lack
of information about intracellular protein concentratiors and in vivo reaction rate
constants. This implies that the identi ed parameters can ot be directly compared
to literature data related to measurements with known concgrations. But the
model ful lls its main aim, and shows the required qualitatve dynamic behavior
and complexity for the description of the two-pathway regudted signaling system.

2.4 Conclusions

A simple, in a sense (regarding the number of reactions) mmal dynamic model
of G protein dependent and independent signaling is propaken this chapter. The
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model focuses on the characteristic qualitative pattern dhe time evolution of the
key components this way enabling experimental veri cation

We have shown that if we take both ERK-mediated RGS and MAPKP fedback
regulations into account, a qualitatively acceptable dowstream behavior can be
obtained in total ERK activation as well as in particular cass of G protein dependent
and/or independent signaling.

Based on the simulation results presented here, we can cam# that model-
ing of slow transmission, RGS and MAPK-mediated regulationf signaling can be
e ciently described using the framework of reaction kinetc systems, that may be
essential when analyzing the dynamic behavior for physigal cell signaling. This
type of model enables us to use the de ciency-based stahjliand multistability-
related results of Feinberg et al. [44, 31, 32]. In additiorthe determination of
optimal time-dependent drug dosing may also be possible ngi control theoretic
methods.

The proposed mathematical model could be an e ective tool tanalyze the
qualitative e ect of pathway selective drugs on signaling yhamics, for example
Lithium in the case of dopamine-signaling [9], and to undene the importance of
such medicines.

If the measurement or estimation of intracellular protein oncentrations and rate
constants were available, the model parameters could be estimated to quantita-
tively t experimental data, and be comparable to other liteature results. Such
an improvement of the model would be of great importance, sia the relative con-
centrations of the proteins corresponding to the signalingystem may vary with
cell type and thus can give rise to qualitatively di erent sgnaling dynamics. This
extension could open the way to study how the variation of destoichiometry of
reactants can a ect signaling kinetics.
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Chapter 3

Identi ability and parameter
estimation of a single
Hodgkin-Huxley type ion channel
under voltage clamp measurement
conditions

In this chapter some theoretical issues of Hodgkin-HuxleyHH) type models (the
model class used later in Chapter 4) are addressed. in patar, the identi ability
properties of a single HH type voltage dependent ion channelodel under voltage
clamp circumstances are analyzed. The elimination of the drential variables is
performed, and the identi ability of various parameters isanalyzed. As we will see,
the formal identi ability analysis shows that even in the smplest case when only
the conductance and the steady state activation and inactation parameters are to
be estimated, no identi able pair from the three can be chose

In addition, a possible novel identi cation method is propsed, which is able
to handle the arising identi ability problems. The proposel method is based on
prior assumptions and on the decomposition of the parametestimation problem
in two parts. The rst part includes the estimation of the maxmal conductance
value and the activation/inactivation parameters from the values of steady state
currents obtained from multiple voltage step traces, utiliing the prior assumptions
corresponding to the mathematical form of steady state futions. The use of steady
state currents allows the estimation of the rst parameter goup independently of
the other parameters. This parameter estimation problem sellts in a system of
nonlinear algebraic equations, which is solved as an optiration problem.

The second part of the parameter estimation problem focusesa the parameters
of the voltage dependent time constants, and is also formidal as an optimization
problem. The parameter estimation method is demonstratednain silico data, and
the optimization process is carried out using the Nelder-Mel simplex algorithm in
both cases.

The results of the chapter are used to formulate explicit deria for the design
of voltage clamp protocols.
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3.1 The concept of identi ability

Once the model structure is xed (see later Egs. (3.1)-(3.3n our case), the next
key step of the modelling process is parameter estimationehguality of which is
crucial in later usability of the obtained model (see [109]ral for e.g. the parameter
estimation procedure detailed in chapter 4).

The identi ability properties of the system describe whetler there is a theoreti-
cal possibility for the unique determination of system panmaeters from appropriate
input-output measurements or not. Basic early referenceerfstudying identi abil-
ity of dynamical systems are the books [157, 158]. The studyd development of
di erential algebra methods, that are used for identi ability analysis, contributed to
the better understanding of important system theoretic prblems [39, 47]. The most
important de nitions and conditions of structural identi ability for general nonlin-
ear systems were presented in [110] in a very clear way. Fuwthdevelopments in
the eld include the identi ability conditions of rational function state-space models
[115] and the possible e ect of special initial conditionsroidenti ability [134].

Both the articles [102] and [165] realized the weaknessestloé conventional
estimation algorithms, and provided improved methods forhe estimation of HH
models. Lee et.al. [102] proposed a new numerical approachimterpret voltage
clamp experiments. As one of the main results of this articlet is stated, that all
channel parameters can be determined from a single appraig voltage step.

The aim of this chapter is to carry out a rigorous identi ability analysis in a
simple case of the HH model class under voltage clamp measoeat conditions in
order to verify or falsify the above results related to paraseter estimation of HH
models.

3.2 Hodgkin-Huxley type mathematical modeling
of membrane dynamics and ion channels

Hodgkin-Huxley (HH) models, which stand for the most widelyused model class
in computational neuroscience, are nonlinear electric cuit models, composed of
parallel voltage dependent (and possibly voltage indepeeant) conductances, which
refer to various type membrane currents.

The basic modelling assumptions of the HH model, which are $&d on the kinetic
description of the behavior of multiple voltage-dependergubunits [70], are evident
and well formulated from the physical perspective. In conést, if we analyze the
model from the point of view of system theory, as a nonlineatate-space model
(a system of nonlinear ordinary di erential equations, ODES), several interesting
guestions arise, related not only to the bifurcation struaire of the model [78, 55],
but also to the identi ability properties of the system clas [110].

The general HH model is based on the description of ionic cents in the fol-
lowing form:

li=gmf" P (Vi Ej) (3.1)

wherel; is the current of thei-th channel,m; and h; are the corresponding activation
and inactivation variables on the powergm,; and pni, which correspond to the number
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of independent subunits of the voltage channel proteirV is the membrane voltage
and E; is the reversal potential of the corresponding ion.
The dynamics of the activation and inactivation variables ee described by

% =(miz (V)i mi)=éni(V); % =(hiz (V)i hi)=ai(V) (3.2)
where m;; (V) and h;; (V) denote the voltage dependent steady state values of
activation and inactivation variables, and ¢ (V) and ¢4 (V) denote the voltage
dependent time constants.

In general, two basic measurement protocols are used for pareter estimation
of neuronal models: thevoltage clamp protocglwhen the voltage is xed and the
transmembrane currents are measured, and tloeirrent clamp protoco] in which case
an arbitrary value of injected current to the cell is xed. Inthe case of current clamp,
the time evolution of the voltage can be calculated as a furioh of the membrane
currents v 1 X

—=i=C 1) (3.3)
dt c" .
where in addition to the above detailed ionic currents with eltage dependent con-
ductance, constant conductance leak type currents can albe taken into account.

In the case of voltage clamp, where the voltage is held constathe only re-
maining di erential variables are the activation and inacivation variables.

In the following, we analyze the identi ability properties of the most simple HH
model, a single ion channel, under the assumptions of rst der activation and
inactivation dynamics and voltage clamp measurement protol.

3.2.1 A simple ion channel model

We consider a simple hypothetical ion channel with one acation (m) and one
inactivation variable (h). The current, which is the measured variable under voltage
clamp circumstances, is simply described by

| = gmh(V | E) (3.4)

whereV is the voltage,g is the maximal conductance, and is the reversal potential
of the corresponding ion. Bothm and h are di erential variables described by the
equations

dm _ mi (V)i m
N N (3.5)
H H R |
B Vizom i V .
my (V) = 1+ exp T 7 km>0 (3.6)
m
H H . 2ﬂﬂ il
1 ~(Vm i V)
m Cbm + Cam€XP | % (3.7)
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dh hi (V)i h

a TR M oY
B Vioni VT
hi (V) = leexp SRS k<0 (3.9)
h
M H . 2ﬂﬂ il

1 (MMaxh i V)
—_—— = Con+ Cqn€Xp | —m——"— 3.10
) bh + Cah€XpP i 7 (3.10)

whereVi-m, Km, Vi=on, and ky, are the parameters of the Boltzmann functions which
describe the steady state activation and inactivation vales. Com, Cam, Vvaxm » Y,
Coh, Cah» Vmaxh and % denote the parameters of Gauss-functions which describeeth
voltage dependent time-constants.

We have to note that the approximation of the steady state vales with Boltz-
mann functions is not always valid, at it is described in [185 However in the rest of
this chapter we assume that this consideration holds. It capbe said that in the liter-
ature the use of Boltzmann-type sigmoid functions is widespad for the description
of steady-state values, but not exclusive (see e.g. [93]).

The description of the voltage dependent time constants irhe literature is more
diverse. In fact, the variability of time constant curves caesponding to various rate
constant functions is described in [165]. In this study we Wiuse standard Gauss
functions, parameterized byCym, Cam, Vvaxm » ¥, Cony Cans Vmaxh and %.

3.2.2 Voltage step protocol

An important version of the voltage clamp method is when the altage, which is
in this case the manipulable input () of the system, is held piecewise constant

of my, hy, ém and ¢, can be considered as time-invariant parameters in addition
to g and E. This implies that the non-polynomial nonlinearities of Bétzmann
and Gauss functions (Egs. (3.6), (3.7) and (3.9), (3.10)) arnaturally eliminated
from the equations, and the model will fall into the class of glynomial systems,
which makes the application of e ective computer algebra ls@d software tools (e.g.
DAISY [11]) possible for identi ability testing.

Under this circumstances will denote the voltage independenature of the above
parameters shortly by supressing th& argument, i.,e.m; (V)= my, ém(V) = ém,
hy (V)= hy and ¢n(V) = ¢én, with V = V.

In this case, Eqgs. (3.4-3.10) are simpli ed as follows:

| = gmh(Vpj E)=gmh(uj E) (3.11)
y=1;, u=V,= const

dm_my; j m_ dh_h; i h

e . B (3.12)

where the model parameters arg; E; m; ;¢ém;hy and ¢n.
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3.3 Structural identi ability notions and tools

In the following we will give a short formal de nition of structural identi ability,
and provide a su cient condition of this concept. In generallet us consider the
following class of models

X

y

f(x;u;p); x(0) = Xo (3.13)
h(x; u; W)

wherex 2 R" is the state vector,y 2 R™ is the output, u 2 R¥ is the input, and

1 2 RY denotes the parameter vector. We assume that the functiorisand h are

polynomial in the variablesx; u and p.. We remark that majority of nonlinear state-

space models with smooth right-hand sides can also be embeddnto the above
polynomial model form (3.13) on the price of increasing thdage space dimension
[68].

3.3.1 Global structural identi ability analysis using di eren-
tial algebra

Shortly speaking,global structural identi ability means that

y(tip) © oyi’y) W= 1 (3.14)

where

y(tjw) = h(x(t; w); u(t); W (3.15)

and x(t; u) denotes the solution of (3.13) with parameter vecton. This means that
if the system outputs are identical, then the underlying paameters are the same:
this is a model property, e.g. the property of (3.13).

The following notations, de nitions and conditions are moly taken from [110].

Let us denote a di erential polynomial F (u; u;:::;y;y;:::) by F(u;y;p) wherep =
d
E.

The structure (3.13) is globally identi able if and only if by dierentiating,
adding, scaling and multiplying the equations the model cabe rearranged to the

parameter-by-parameter linear regression form:

Pi(u;y;pk i Qi(u;y;p)=0 i=1;:::;d (3.16)
It is visible from (3.16) that i can be expressed as
Qi(uy;p) .
= S5 1=1;110d 3.17
A Y (TRYYS (3.17)

if P;s are non-degenerate. The non-degenerate condition can bstéred by ensuring
that the inputs excite the system dynamics su ciently so tha the parameter vector
can be determined in a numerically well-conditioned way.
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3.4 Structural identi ability of ion channel models

In this section the identi ability properties of the ion channel model de ned in 3.2.2
are analyzed.

3.4.1 Elimination of di erential variables from the ion chan-
nel model under voltage step conditions

The identi ability analysis requires to eliminate the di erential (state) variables m

and h from the model Egs. (3.11)-(3.12) and then to nd the paramedr groups
that can be determined from the resulting equations. The rsstep towards the
input-output description described by Eq. (3.16) is to algeraically eliminate those
di erential variables from the model (3.11)-(3.12) that ae not identical to the output

y. This means that both m and h have to be eliminated in this case. Firstly, the
time-derivative of the output is computed as

i hi i h
mllmh+mll

y=L=g(ui E)(mh+ mh)= g(uj E)(

) (3.18)

The above equation can be rearranged to

g(ui E)((my i m)éinh+ m(hy i h)ém)
g(ui E)(my énh+ mhy ém)i Y(ém + én) (3.19)

Yémén

If we further take the time-derivative of Eq. (3.19) we get tle expression
eméenh = g(ui E)((hs i h)my +(my i m)hy )i Y(im+ &)  (3.20)
Let us rearrange Egs. (3.19) and (3.20)

v (s 4
éménY T Y(ém + én) hy énm+ My ah

g(ui E)
oms h _ émén A+ Y(ém + én) he m+m. h
1 11 g(ui E) 1 1

which is a set of linear equations in the variablem and h, therefore they can be
expressed as:

_ i iméPA Y(2ém * én)éni (ém t én)y +20(ui E)my hy ¢y
m = he OUT E)dn i m) (3:21)

_ et Y(ém +2én)ém + (ém *+ én)Yi 29(ui E)my hy ém
h = M1 gui E)(éni ém) (3:22)

The above explicit expressions fom and h show that the system isalgebraically
observabld39, 11] in this case.
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3.4.2 Identi ability of g, m; and hy

The next step in the identi ability analysis would be to subditute Egs. (3.21) and

(3.22) into the model equations (3.11-3.12) and try to expss the parameters in the
form of Eq. (3.16). However, this step produces so lengthymessions, that we will
rely on computer algebra programs.

In this subsection we analyze the case when it is assumed ttaatly the param-
etersg,m; and h; are unknown. We use the di erential algebra software DAISY
for identi ability analysis of the model [11]. The code usedor the analysis can be
found in Appendix E.

At rst, the results of the analysis show that the model is algbraically ob-
servable, which is in good agreement with our results regangd the elimination of
di erential variables (see Eg. (3.21) and (3.22)).

At second, according to the identi ability results of the aralysis, the parameters
g, m; andh; are not independent, namely no identi able pair of the threecan be
chosen. This results seems trivial in the case of steady statvhenm = m; and
h = h; , because in this case only the product of the three parameseappears as
outputin y=1 = gmh(Vj E). But the dependence also holds during the transient
period.

In the following, we present an interesting example illusaiting non-identi ability
when the parameters of the system are di erent, but the outpts of the two systems
are identical.

Example for non-identi ability at constant input voltage

In this subsection we present two cases of the model (3.11-3. that have di erent
parameters but provide the same output in the case of a constainput voltage.
The key issue for this counterexample is the modi cation oftte initial values of the
state variables.

In general, in the case of constant voltage, the trajectoryfahe state-space
variables can be expressed as:

m=m; +(m(0) i my)exp(i t=¢m) h=nhy +(h0)i hy)exp(i t=¢n) (3.23)

The current, which is the output (y) from the point of view of g/stems theory, can
be described in this case by Eq. (3.24) below

I(t)

y(t)= gmh(V j E)m (3.24)
g(my +(moj my)exp(j t=¢m))(h1 +(hoi h1)exp(j t=¢n))(V i E)

Now, let us scale the model parameters with a positive scalaras follows:m; =
, ¢m; , and g° = g=,. Furthermore, let us choose the initial values of the state
variables asm®(0) = , ¢m(0), h*(0) = h(0). The output of the modi ed model is
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then

y'(t)= ¢°(Vi E)m°h*

= (Vi E)g°(m] +(m°0)i mji)e Pt)(hy +(h°(0)i hy)e P (3.25)
=(Vi E)g(,m 1 +(.m@©)j .mq)e Tem)(hy +(h(0)j hy)e Fen)
= y(t)

from which it is clear, that the scaled model generates exdgtthe same output as
the original one. The circumstances of the above case are wety likely to hold in
the case of a standard voltage clamp protocol, where the vagie is held at an other
constant value (the holding potential Vi,o,q) before the voltage step. The holding
potential determines the initial values of the di erential variables: m(0) = m(0) =
M1 (Vhoig) @and h(0) = h(0) = h; (Vhog)). However, the scenario is not impossible,
as we will show below.

Example for non-identi ability in the case of a single voltage step

Using two ctitious neurons, we will now show that the measuable current responses
of a voltage step during voltage clamp measurement can be mtieal in the case of
di erent parameters. In this case, we relax the former assystion that the input
voltage is constant during the experiment. This means that gwill use the original
non-polynomial ion channel model given by Egs. (3.4)-(3.10

Let us suppose that both neurons to be compared here inhibinly one ion
channel, and the activation and inactivation characterigts of the rst neuron are
described by

H M N b Y
(VARRRVALE
my (V)= 1+ exp % (3.26)
m
H M R || |
Vioni VI
hy (V)= 1+ exp 71_2£'
h

The parameter values for the two neurons can be found in TabR1l. The other
parameters in the case of both neurons were the following

hy =0:75 Vvaxm =i 78MV; 3% =34; cim = 8:7ms;
Com = 0:8ms; E = | 93mV; Myaxn = i 23mV
% =24; cp = 6:9MS; Gy = 9mMS: (3.27)

Table 3.1: Parameters of the two neurons

No V1:2m km V1:2h kh g
1 |-31.932 mV| 13.033| -44.354 mV| -5.139| 67 nS
2 | -41.056 mV| 10.555| -44.354 mV| -5.139| 44.67 nS
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Figure 3.1: Voltage dependencies of the steady activatiom@ inactivation state
functionsm; , m{ and hj =h}

As it is shown in Fig. 3.1, the value ofm; is 0:35 at -40mV and it is 0:20 at
-50mV. At the same time, the value oim] of the second neuron i€:525at -40mV
and 0:30 at -50mV. The inactivation curve corresponding toh; was the same in
both cases. We applied a holding potential of -40 mV and a valge step to -50 mV
at t=100ms.

The comparison of trajectories of activation and inactivabn variables and the
output are depicted in Fig. 3.2. The gure clearly shows thatthe outputs are
identical in the two cases, although the parameters of the ttvmodels are di erent.
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Figure 3.2: The activation and inactivation variables, andthe output during the
voltage step in the case of neuron 1 and 2. The upper indéxefers to the activation
and inactivation variables of neuron 2. The measured outputurrent traces are
identical in both cases.

Discussion

The article [102] implicitly realized this problem of intedependence between the
activation/inactivation variables and the conductance, ad they proposed a method
to estimate the parameterg in which they assume that the voltage step is su ciently
large to ensurem; =1 (in addition this assumption may also implyh, =0). This
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method can be an appropriate solution for the estimation af, but similarly to the
proposed case the interdependence can also appear betwaenand h; .

Furthermore, the above investigated case serves also as aample of a voltage
clamp trace where no local maximum (peak current) appearsgs Fig. 3.2), which
implies that method proposed in [102] can not be used withoumodi cation.

The above results imply that for the design of a parameter dstation method
we have to take into account the possibility that the paramedrsm; ;h; and g can
not be determined uniquely from a single voltage step. We hato admit that these
special parametrizations which were used for the counteraples are not very likely
in the case of real neurons (these parameter sets probablynioa set of measure 0
in the parameter space), but noise, deviations from the ide8&oltzmann functions
and possible wrong guess of the powers of the activation anthctivation variables
can further complicate the situation.

3.4.3 Identi ability of ém and ¢n

In the case of the voltage step protocol, the input (u=V) and he parametersm; ,
hy, én and ¢, in EQ.(3.12) are constant. When we further assume that then, ,
h; , g and other parameters of the model are known, the only unknowwarameters
are ¢m and ¢n.

The di erential algebra based computer analysis shows, théhe system is locally
identi able in this case. This means that both voltage depetent time constants
can be estimated at each voltage value, if the other parameseare known. This
fact will be important later in the proposed parameter estimtion method.
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3.5 Proposed parameter estimation algorithm for
one HH type channel model under voltage clamp
measurement conditions

In this section we propose a parameter estimation method ket on the results of the
identi ability analysis. The main idea of the method is basd on the decomposition
of the parameter estimation problem into two consequtive sps

1. estimation of conductance, activation and inactivationparameters from the
steady-state current values of multiple voltage clamp traes,

2. estimation of the voltage dependent time constants based the entire current
response.

3.5.1 Estimation of conductance and activation parameters

As we have demonstrated in the previous section, there is agsible (but we have
to confess that not probable) scenario when the parametegsm; and h; may not

be identi ed independently. We can avoid this problem by usig multiple voltage

steps, and the prior knowledge that the voltage dependencktbe steady state values
of activation and inactivation functions are described by Bltzmann-functions (see
Egs. (3.6) and (3.9)). However, as it is described in [165hé Boltzmann functions
are only approximations of the steady state curves.

This implies that we proceed from the local estimation proleim ofg, m; andh,
to the global estimation ofg, Vi—m, km, Vizn and k;,, which parameters uniquely
determine the values ofm; and h; at each particular voltage step value. The
assumption of the accessability of multiple voltage steps absolutely realistic, and
we can ensure the application of the information content ofvery single measured
voltage trace this way, which implies further bene ts form te point of view of noise
reduction.

Furthermore, the numerical method proposed in [102] is baten the deter-
mination of the time and value of the maximal current during he voltage step
measurement, but a local maxima does not necessary appeaewery case (see Fig.
3.2).

According to these observations, our aim is to propose a meith for parameter
estimation, which ensures a reliable solution to the wideskt of possible parameter
values, and is numerically feasible at the same time.

In the rst step of the method we will analyze only the steady &te currents in
the case of multiple voltage values. In this case the equatio

I =gmi hy (Vi E)

holds. The state variables will be equal to their steady statvalues, no dynamics
appear. Implicitly, in this case we can only estimatey, Vi—m, Km, Vizn and k;
from the (steady state) current at several voltage valueg,, and ¢, do not appear
in the equations. Of course, in the case of real measuremewts can only access the
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approximate values of steady state currents, but we now asse that the voltage
step is long enough to provide the necessary values.

In this case, the estimation problem will result in an algelaic solvability problem
of a system of nonlinear equations. If we supposaneasurements at distinct voltage
values, we get the following system of nonlinear equationdssume that the values
of the (steady-state) currents (j) in the case of multiple voltage values\{,) are
known. and these are equal to

li=gmyihy (Vi E) for i =1ton (3.28)
wheren is the number of traces, and where
H H 19 .1 H H 1M 4
Vioom i Vi : Vion i Vi :
m; ;= 1+exp Jim 1 T hyi= 1+ exp Jizn il W (329)

Kn

The unknown variables to be determined arg, Vi-om, Km, Vi=on andk;,. Furthermore
we know that k,, > 0 and k, < 0. As we have ve parameters to estimate, at least
5 measurements are needed for the estimation.

Parameter estimation algorithm for 0, Vizom, Km, Vi=on, ki

In the case of more than 5 measurements, a least squares (LSjeation procedure is
possible. With this, we can use an optimization-based refoutation of the problem.
Let us de ne the following objective function:

/\ X1 2
Wi(@ve = (lii oMy Ay (Vi E)) (3.30)
i=1
where
A A noy A A oy
_ 1=om i Vi _ 1=h i Vi
M= 1+exp Ay 1+ exp (3.31)
Qm Qh

whereﬁ denotes the parameter vector of the objective function, iheding estimated
parameter valuesy, Vi—om, Km, Vi—n and K. The vector containing the real values
of the parameters (the vector to be determined) is

K= arg min le(ﬁ)vc
For the optimization process we used the e cient, gradienfree Nelder-Mead simplex
algorithm [123] to minimize the error.
Convergence properties of the Nelder-Mead simplex method for the es-
timation problem of g, Viom, Km, Vizn and kj

We analyzed the convergence of the optimization in the casétbe parameters with
the valuesg = 67 nS, Vi, = | 3193 mV, K, = 13:03 Vi, = j 4435mV and
ko, = i 5:14.
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Simulation results showed that the convergence of the algitim to the global
optimum (W1(M)vc = 0) strongly depends on the number of voltage values (n). In
the case ofn = 5 voltage values, the algorithm can easily stuck in local mima,
close to or far from the global solution, depending on the i@l values of the pa-
rameters, and the values of the voltage steps. If we add fueh voltage values, the
convexity properties of the problem seem to improve. The ceargence properties
of the algorithm may depend further on the exact values of theoltage steps.

The results show, that measurement data of steady state cemts at multiple
values makes the estimation of the paramete§ Vi—om, Km, Vi=on, Ky possible with
the proposed optimization method, if we assume an appropt&(8 25%) initial guess
of the parameters. Simulation experiments show that the nuber of the required
voltage steps () is at least twice as much as the number of parameters to estite
(in this case 10). More voltage values, of course, may ensuhe convergence to
the global optimum, even in the case of worse initial guess parameters, however
n> 12; 14 values are not very realistic. Furthermore we showed that thresult of
the estimation method can be sensitive to the distribution othe voltage values in
the voltage range. The choice in which the voltage values adistantly cover almost
the entire range of activation and inactivation functions sems promising.

The proposed method is strongly based on steady-state cumtg, and as a conse-
guence, it works only if there is a voltage interval presentn which both the steady
state activation and inactivation variables are practicdly not equal to 0. If the
intersection interval is narrow, a reasonable considerati would be to arrange the
voltage steps in a way which provides high density of voltagelues in the intersec-
tion interval. In this case the values of the steady state cuents will be signi cantly
lower, and convergence properties of the method can sigramtly deteriorated by
measurement noise. However, without noise, the proposedtimed applied with 10
voltage steps ranging equidistantly from -80 to -8 mV succsfsilly converged to the
nominal parameters for e.g. in the case of activation/inadtation characteristics
depicted in Fig. 3.3. Compared to other cases where the ingection is closer to the
in exion points, a one order higher number of iterations (f&/ thousand evaluations)
was needed to nd the nominal parameters.

e

0.81

0.6

0.41

0.21

-100 -50 0 50
V [mV]

Figure 3.3: Activation and inactivation curves fn; and h; ), with narrow intersec-
tion (V-type curves)
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The nominal parameters (corresponding to Fig. 3.3) and thanitial values for
the optimization (8 50%) are detailed in the Table 3.2.

Table 3.2: Nominal and initial parameters in the case of V-fye characteristics

g Viom  Km Vi=n  Kn
Nominal 67 -18 8 -68 -5
Initial 83.75 -27 12 -102 -2.5

Discussion

Possible generalizations of the problem can be the additiar further ion channels
of the same or dierent type, and the inclusion of dierent pavers of activation
and inactivation variables in the current equations. From a optimization point of
view the inclusion of powers of activation and inactivatiorvariables will lead to a
mixed-integer nonlinear programming problem.

We have to note that the basic Nelder-Mead simplex algorithrdoes not handle
constrains on the parameter values. In contrast, we have diqgit constraints on the
maximal conductance and the slope factor of the Boltzmann ffigtions in our case,
namelyg > 0, k,, > 0 and k, < 0. According to the simulation experiences, the
simplex based optimization usually does not result in paraeter values which violate
these constraints. But if they do, one can easily identify t non correctness of the
values, drop the result and start the optimization processdm a di erent point in
the parameter space.

A further alternative can be the usage of the freely availablAsynchronous Paral-
lel Pattern Search (APPS) algorithm [72], which can handlehtese linear constraints
of the parameters, and can be easily parallelized. Moreoyé¢ne method can e ec-
tively handle noisy objective functions.

The optimization does not require high computational powedue to the static
nature of the problem. The optimization process took 10-15a a typical dual-core
desktop PC.

3.5.2 Estimation of voltage dependent time constants

After the estimation of g and the parameters of the Boltzmann functions, our next
task is to determine the time constants at the particular vdhges de ned by the
applied voltage steps. In this case the global estimation @, Cam, Vvaxm » ¥,
Coh» Cah, Vvaxn and % is also possible, but it is not needed, because the results
of the identi ability analysis have shown that at a particular voltage value¢,, and

¢n are identi able. On the other hand, if we perform a series ofokal estimations
of ¢m and ¢n, we have to estimate only 2 parameters at the same time instkaf

8. Thereafter, one can t any kind of function (not only gausgn) on these time

40



constants corresponding to the particular voltage valuesyhich may also reduce the
number of parameters in the resulting model.

According to the results of the previous sections, we assurtiet the values of
0, Vi=om, Km, Vi=n, kn are known, and the parameterg,, (V) and ¢,(V) at di erent
voltages are left to estimate. For the identi cation of ¢, (Vi) and ¢,(V;) at a cer-
tain voltage we can either use the method proposed in [102]nsidering the time
constants as unknown parameters if a local maxima is preseuwir, similarly to the
method described in [165], we can simply perform the minination of the following
objective function:

1
Wo(fve = GG i 15k (3.32)

whereﬁ is the parameter vector (including?, (Vi) and %,(V;)), N is the number of
data points in the measurement record, andl}; and |5, denote the measured and
model computed (simulated) total output current (as a disaete time sequence) and
k:k, is the 2-norm. The state trajectories can be determined eign by explicit by

solving the di erential equations (see Eq. 3.24) or by simation.

Convergence properties of the Nelder-Mead simplex method for the time
constants estimation problem

In this subsection we analyze the performance of the Neldktead simplex method
in case of minimizing the objective function described in Eq(3.32). We perform
this estimation for every voltage step i( = 1;:::;n). The optimization procedure
can provide convergence to local minima also in this case. i§hproblem can be
handled via starting the optimization process from di ereminitial parameter values,
and neglecting the parameter values which result in a high ke of the objective
function.

The convergence to the global optimum (i.e. to the nominal pameters) depends
on the value of the voltage steps, but in this case also on thelding potential. The
holding potential had no role in the case of the estimation @, Vi=m, Km, Vi=n, Kn,
because we only analyzed the values of the steady state catee Now the input data
of the parameter estimation process is the whole current tta, and the initial values
of the activation and inactivation variables, which are detrmined by the holding
potential (Vhog), have high impact on the result. The comparison of the redslin
the case of several voltage step protocols is depicted in Figj4. The parameters of
the particular voltage protocols are described in Table 3,3vhile the interpretation
of protocol parameters is depicted in Fig. 3.5.

Discussion

According to the simulation results, the reason for the sigrmant deviances of the
inactivation time constant in the low voltage ranges is, thathe holding potential

and the value of the voltage step de ned only a small change ihe steady state
value of the inactivation variable (see the relevant values the range of -90 - -60 in
Fig. 3.1). If we apply a holding potential value that di ers more from the value of
the voltage step (for example -20 mV as in the case of estimani 3), we get more
reliable results in the lower voltage ranges.
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Figure 3.4: Results of the parameter estimation process fey (V) and ¢,(V;) at
various voltage step protocols

Table 3.3: Di erent voltage step protocols for the estimatn of ¢, and ¢,

estimation 1 estimation 2 estimation 3
Vhold [mV] -92 -68 -20
Vhase [MV] -94 -94 -88
interval [mV] 8 8 8
stephum 10 10 10
\Y

Step num
1 interval

Vbase
Vhold

t

Figure 3.5: Interpretation of VC protocol parametersViod, Vbases iNterval and
StePhum

In general it can be said, that the results are more reliablé the di erence of
the holding potential and the voltage step is large enough. his implies that if it is
possible, it is worth to complete the voltage step protocol #h both a lower, and a
higher holding potential.

In addition, as it has been noted in section 3.5.2, if peak a@nt occurs in the
corresponding trace and the activation, inactivation and @nductance parameters
have been determined, the method proposed in [102] can bedise e ciently de-
termine the time constants at particular voltage values. Irthis case the preliminary
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knowledge ofm; and h; can further enhance the e ectiveness of the algorithm
proposed by Lee et. al [102].

Regarding the computational needs of this optimization prdem, the estimation
of ¢m and ¢, it can be said, that in spite of the fact that the optimization is dynamic
in this case, thanks to the low number of simultaneously estiated parameters (2
in this case), the running times are of similar order to the as proposed in 3.5.1 by
estimating g, Vi=om, Km, Vi=on and k.

3.6 Conclusions and future work

The identi ability properties of a simple HH type ion channé under voltage clamp
measurement conditions have been analyzed in this chaptelt is shown that at
constant voltage the parameterg m; and h; are interdependent. Based on the
identi ability results, we have shown that in the case of a sigle voltage step, all
these parameters may be theoretically impossible to detemme at the same time.

We can circumvent this problem by using multiple voltage stes, and by utiliz-
ing the prior knowledge that the voltage dependence of theesidy state values of
activation and inactivation functions are described by Bdzmann-functions.

Furthermore, a parameter estimation method is proposed, wdh is based on
the decomposition of the identi cation problem. The rst step includes the estima-
tion of the maximal conductance value and the activation/imctivation parameters
from the values of steady state currents obtained from muftie voltage step traces.
The second step of the parameter estimation problem focuses the parameters
of the voltage dependent time constants, and is also formiéal as an optimization
problem.

The analysis of the parameter estimation method showed thahe following
considerations have to be taken into account if we wish to uske proposed results
for the design of voltage clamp protocols:

1. The voltage steps should be long enough to ensure that thetigation and
inactivation variables are able to (at least approximately reach their steady
state values.

2. At least 10 voltage steps are required for the safe estinma of the investi-
gated 5 parameters corresponding to the activation, inaetation curves and
conductance values.

3. To provide a reliable estimation of the time constants inhe wide voltage
range, the measurements have to be completed both with a hgghand a lower
holding potential.

One of the future perspectives is the generalization of thdanti ability results
and the parameter estimation process in two possible ways tget closer to the
realistic cases. First, ion channel models can be consid&revhere the activation
and inactivation variables appear at higher powers, and sead, models with multiple
types of ionic conductances can be analyzed, where the cumtref variable channels
appear additively in the output equation. In addition, the identi ability analysis of
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the kinetic description of HH models (see e.g. [165]) wouleéta sound sequel of the
work described in this chapter.
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Chapter 4

Hodgkin-Huxley modelling and
parameter estimation of GNRH
neuronal electrophysiology

In this chapter a simple, one compartment Hodgkin-Huxley fge electrophysiological
model of GhRH neurons is presented, that is able to reasonalsgproduce the volt-
age clamp (VC) traces, and the most important qualitative fatures in the current
clamp (CC) traces, such adaseline potentialdepolarization amplitudessub-baseline
hyperpolarizationphenomenon andiverage ring frequencyin response to excitatory
current observed in GNnRH neurons originating from hypothalaic slices.

The parameters of the model are estimated using averaged Vi@des of multiple
GnRH neurons, and characteristic values of measured curreatamp traces. Re-
garding the resulting parameter values, in most of the casasgood agreement with
literature data was found. The simplicity of the model allows its future integration
as a building block into composite models that describe a feeonnected GNRH
neurons.

Modi cation of model parameters makes the model capable blrsting, the ef-
fects of various parameters to burst length are analyzed.

4.1 The signi cance of GnRH neurons

As it is described in section 9.2, of Appendix A, central comdl of reproduction
in vertebrates is governed by a neuronal pulse generator theontrols the activ-
ity of hypothalamic neuroendocrine cells secreting Gonattopin-releasing hormone
(GnRH). The pulsatile release of GnRH, which is closely assatzd with con-
current increases in multiunit electrical activity in the mediobasal hypothalamus
[87, 88, 164, 166, 28], is driven by the intrinsic activity o6nRH neurons, charac-
terized by bursts and prolonged episodes of repetitive aoti potentials correlated
with oscillatory increases in intracellular C&* [29, 30].

In close relation with this, several in vitro experiments hee shown that changes
in cytosolic C&* concentration determine the secretory pattern of GnRH [141{in-
derlining that Ca?* plays a central role in the signal transduction processesahlead
to exocytosis. Furthermore, GNnRH secretion from perifused T and hypothalamic
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cells is reduced by L-type C& channel inhibitors and augmented by activation of
voltage-gated C&* channels [97].

The models of GnRH pulse generator, which can be found in théslrature nowa-
days, use very simple generalized neuron models and netwrkurthermore, they
are neither based on the known membrane properties of GnRH mens, nor are able
to describe the e ect of gonadal hormones [21]. Neverthetgeshese investigations
can provide novel results about pulsatility and synchrongation [54, 84].

As it has been stated, to increase the clinical relevance afuroendocrine models,
one has to use sub-models based on as up-to-date biologicébrimation as avail-
able. In the eld of computational neuroendocrinology, in ddition to GnRH related
topics, good examples of this approach are the articles of Kendantov et al. [93]
and Roper et al. [132], which address magnocellular neurasgory cells.

The general aim of this chapter is toconstruct a simple dynamic model of a
GnRH neuron that reproduces some of its characteristic properties (ssection 4.2)
and the parameters of which can be determined from measuremenfhis work is
intended to be the rst step of a bottom-up method towards themain purpose of
building a hierarchical model of the GnRH pulse generator wth also describes the
e ect of hormones secreted by the ovary, and is able to captithe main qualitative
features of GnRH release in di erent phases of the ovarian dgc

4.1.1 General electrophysiology and modelling of GhRH neu-
rons

Sim et al. [138] have classi ed GnRH neurons in intact femaledalt mice as be-
longing to four distinct types. Herbison et al. [67] have chacterized the basic
membrane properties of GnRH neurons. As mentioned in the acte [67], none of
the GnRH neuron types seems to express speci ¢ electrophysgical ' ngerprint’
in terms of the types of the expressed ion channels. Howevewsral recordings have
demonstrated signi cant heterogeneity in the basic membree properties of GhRH
neurons [139, 142] which points to functional heterogengit Furthermore, the dy-
namics of GnRH neurons are a ected by peripherial hormonesdluding estradiol
(E») [35, 118, 43, 66, 26, 121] and progesteroriy) [79, 23].

Based mainly on data collected from GT1 cells, which are basily GnRH neu-
rons immortalized via targeted tumorigenesis, a couple of athematical models
[101, 155, 46, 103] have been proposed to explain some of theeoved experimental
results. These models focus mainly on the autocrine regulat by GnRH through
adenylyl cyclase and calcium coupled pathways [65], whichagncontribute to burst
formation [46]. The model described in [103] analyzes thentwl of bursting by
calcium dependent potassium currents: small conductanc8K) currents described
in [108], and a slow UCL-current.

However, the ring pattern of GT1 cells and that of the modelgublished in these
articles is qualitatively di erent compared to GFP-taggedGnRH neurons originat-
ing from hypothalamic slices. The depolarization, hyperparization amplitudes and
the spontaneous ring frequency are much lower in the case GfT1 cells (compare
e.g. the data published in [153, 154, 101, 155] and [138, 2%])3 This implies that
while these models can be appropriate for analyzing the meghism of action cor-
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responding to GnRH and various drugs which act through Ca coupled pathways,
they may be inadequate when the aim is to describe the in vivoeebavior of GnRH

neurons and the GnRH pulse generator network. Furthermore #se models do not
include the A-type potassium current, which is shown to be psent in GnRH neu-
rons [100, 30, 138, 19, 67] and is a ected by the ovarian horme estradiol [35, 43],
and thus may be a key regulator of neuronal activity during tke ovarian cycle.

In order to ful Il the aim of electrophysiological model deelopment, GFP-based
whole-cell patch clamp recordings were carried out on mou&&aRH neurons (which
were available by courtesy of S. Moenter, Univ. of VirginiaCharlottesville, VA,
USA). The measurements were performed by Imre Farkas in thehoratory of En-
docrine Neurobiology, Institute of Experimental Medicinef the Hungarian Academy
of Sciences. In the present work the obtained data are usedittentify a Hodgkin-
Huxley type conductance-based model [71] of membrane dynam The elements of
the model (ionic conductances of speci c types of ionic chaals) are designed using
literature data.

The outline of this chapter is as follows. In section 4.2 theequired properties
of the model are speci ed, in section 4.3 the measurement rhetdls, mathematical
modelling and parameter estimation are described. Secticgh4 summarizes the
simulation results of the model. Conclusions are drawn in3l.. The appendix D
describes the details of the parameter estimation process.

4.2 Model speci cation

In this section the desired features of the model are de nednd the intended use
of the model is explained.

4.2.1 Characteristic features to be described by the model

The above mentioned experimental observations indicate portant characteristic
features of GnRH neurons, which should be reproduced by the d®. In particular,
the following features are to be described by our model.

1. The model should qualitatively reproduce the typicalVC (voltage clamp)
traces of GnRH neurons originating from hypothalamic slices.

2. The model should be able to reproduce the shape of actiongatials observed
in GNRH neurons originating from hypothalamic slices. For dails see the
later detailed experimental results and for example the datpublished in [138,
27, 35], in particularthe high depolarization amplitudes and the characteristic
sub-baseline hyperpolarization after the action potentials (APS)

3. The model should exhibit similarexcitability properties to the cells observed
during the measurement process. This means that the same i@&nt injection
which proved to be able to evoke APs during measurement shduhave the
same e ect on the model.
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4. The model should be capable dfursting Bursting properties of this neuroen-
docrine cell have been described in several articles copesding to GnRH
neurons originating from hypothalamic slices [98, 142, 2@ well as in the
case of GT1 cells [154, 24]. Based on the above articles, theadion of bursts
in GnRH neurons have been found to range between 1 and 40 s withaverage
frequency about 10 Hz.

4.2.2 Intended use of the model

Several mathematical models can be found which aim at dedmng the hormone
levels during the menstrual cycle [16, 57, 62, 61, 129]. ThenBH pulse generator
in these models is taken into account (if it is taken into acaot at all) in a rather
simpli ed way. A more detailed, neurophysiologically rekeant model of the GnRH
pulse generator network, would surely improve the signi aace of such models.

The model to be developed should be able to reproduce the dyma proper-
ties of GnRH neurons relevant from the point of view of the feni@ neuroendocrine
cycle. Furthermore it should be used as an element of a neuratwork that re-
sponds to the ovarian hormone levels, and the excitation detred by neighboring
anatomical areas. A further intended aim of this network moel will be to analyze
the synchronization phenomena [38] between GnRH neurons.

4.3 Materials and Methods

The structure of the applied mathematical model together wh the measurement
results is brie y described in this section. The details oftte measurement conditions
can be found in Appendix D (section 12).

4.3.1 Mathematical model
The suggested model framework of single cell models

The model framework is proposed for a single compartment. €hdeveloped single
compartment model can serve as a good basis for possible dasearch focusing on
multicompartmental modelling.

Although the modelling of intracellular C&* levels can unravel interesting inter-
actions [64], at this rst stage of model development we do hanclude the changes
of intracellular Ca?* concentration and calcium dependent currents in the model
and, as a consequence, we assume a constant reversal paeofi Ca2*. This sim-
pli cation can be accepted as long as we do not wish to take imtaccount C&*
dependent currents and exocytosis, and the model providesasonable results. In
addition, possible model simulation results correspondinto intracellular Ca?* lev-
els could only be validated with C&" imaging, which was not available during the
measurements.
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Elements of the model

The elements of the model are presented in terms of ionic chragls that are taken
into account.

1. The presence of tetrodotoxin-sensitivbla® currents has been experimentally
con rmed in the case of GT1 cells [19] and embryonic GnRH neurs [100].
Adult GnRH neurons were found to re Na~ dependent action potentials [138].
The sodium current in the model will be denoted by .. We suppose third
order activation and second order inactivation dynamics.

2. The presence ofA-type K* transient or rapidly activating/ inactivating con-
ductance has been described in the case of GT1 cells [19, 30], in eminigo
cultures [100], and in GnRH neurons originating from mice [83 67]. This
current will be denoted byl » in the model. This type of potassium current
Is quite widely studied in the literature even in the case of @RH neurons
[35], and on hypothalamic neurons in general [159, 112]. Heeresults provide
useful initial values for the parameters of this current. Fithermore, literature
data indicated that the ovarian hormone estradiol modulate this current in
mice GnRH neurons [35] and also in GT1 cells [43].

3. A voltage gateddelayed outward recti er K channel can be assumed, which
contributes to the more slowly activating, sustained compeent of the outward
K* current (1) - see [100, 30, 138, 19, 67].

4. A non-inactivating M-type K* current (I ) is also taken into account, which
Is considered a key modulator of neuronal activity in GnRH chsl [172].

As stated before, the main perspective of this modeling predure is the de-

scription of GNnRH release. Based on the results that underkrthe importance

of calcium oscillations corresponding to hormone releadel]l, 97], we take into

account 3 types of C& conductance to be able to describe the qualitatively
di erent components of the calcium current.

Furthermore, according to the results of Beurrier et al. [13the interplay of
di erent calcium currents can contribute to periodic bursing behavior which
can be of high importance regarding neuroendocrine funatis.

5. Low voltage activated (LVA) T-type Ca?* conductance, which is activated in
earlier phases of depolarizationl¢), has been described in the case of rat
[80] and mouse GnRH neurons [67], as well as in GT1 cells [15Bhe paper
[175] proves that the expression of the T type calcium chaniseis estradiol
dependent in hypothalamic GnRH neurons. As a result, duringhe preovula-
tory LH surge a much altered calcium conductance of the GnRH neons will
contribute to their action potential burst formation.
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6. Furthermore, based on the results of Watanabe et al. [16f§lated to GT1-7
cells, and in vitro experiments [80, 125], we assumdgh voltage gated (HVA)
Ca®* channelrepresentingR and N type conductance§l g)

7. In addition, a HVA long-lasting current (L-type) Ca?* channel is modelled
(1) - see the articles [97, 125] for in vitro results and [153]f&T1 measure-
ments.

8. Lastly, two leakage currentscorresponding tosodium (Il eakna ) @nd potassium
(leakk ) With constant conductance are taken into account.

Several other ionic currents have been shown to appear in GnRt¢urons, for
example thel o=y current [138], C&" activated potassium currents [27, 46], which
are not considered in the model. The reason for this is that éhfurther (especially
Ca?* dependent) currents would signi cantly increase the modalomplexity, which
would lead to a signi cantly harder solvability of the paraneter estimation problem.
Furthermore these currents turned out to be nonessential fdhe reproduction of
the features determined in section 4.2.1. After a simple methas been identi ed it
can easily be extended with the currents omitted in the rst g&ep of the modelling
process.

Model Equations

The equivalent electric circuit  of a one-compartment GnRH neuron model with
all the above conductances is shown in Fig, 4.1.

1 Ona | 9a | Ok | Om Oieak Na | Jleak k
| e %%%fz )
! ]

=

Figure 4.1: Parallel conductance model, with conductancespresenting di erent ion

channels in voltage dependent and independent mannegy, denotes the sodium
conductancega, g« and gy denote the A-type, delayed recti er and M-type potas-
sium conductancesgr, gr and g. stand for the conductances related to T-type LVA
and the R and L-type HVA calcium currents, geakna and geakk cOrrespond to the
voltage independent leakage currents.

The HH type model depicted in Fig, 4.1 can be described by thelfowing equa-
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tions:

dv 1 1

9 i6(|Na+|A+|K+|M+|T+|R+|L+||eakNa+||eakK)+ Elex(4-1)
dm; dh;

dt' = (M1 i Mi)=émi; d—t'=(hi1 i hi)=ai (4.2)

whereV is the the membrane voltageC is the membrane capacitancd,y, denotes
the sodium current, 1o, Ix and Iy denote the A-type, delayed recti er and M-
type potassium currents,lt, Igr and I stand for the T-type LVA and the R and

L-type HVA calcium currents, | eakna @nd lieakk for the leakage currents. Them;

and h; variables are the activation and inactivation variables othe corresponding
currents. mj; ;hj; and ¢ni=ni denote the steady-state activation and inactivation
functions, and the voltage dependent time constants of agttion and inactivation

variables, which are nonlinear Boltzmann and Gauss -likerigtions of the membrane
potential:

_ 1
A i - Vlzzai iv
1+ e Kai
a2fm;hg; i 2f Na;A;K;M;T;R;L g Kii > 0;Kpi < 0 8i
i (Vmax i i V)2
éai = Cpase, * Camp, © & (4.3)

The M-type current has only activation dynamics.
Finally, 1 refers to the external injected current. The currents of ioie channels
are given by

Ina = OnaMRahRa(V i Ena)i la =0amihi(Vi Ex)
lk = mxhe(Vi Exk); Im=%9vumk (Vi Ek)
It = Grmrhr(Vi Eca); Ir=9rMANR(V i Eca)
L = Ymh (Vi Eca)
lleakNa = eakna (Vi Ena); lieakk = Yeakk (Vi Ex) (4.4)

where theEya; Ex ; Eca denote the reversal potentials of the corresponding ions.

4.3.2 Measurement results

Overall 5 cells have been investigated by performing voltaglamp (VC) and current
clamp (CC) measurements.

Voltage clamp

VC traces without prepulse have been recorded in the case dif @lls, and voltage
clamp recordings with prepulse have been completed in theseaof one cell (No.
2). Some typical traces of the averaged VC results are demct in Fig. 4.2. A
more exhaustive depiction of averaged VC traces can be fouimdthe results section
(4.4.1), where they are compared with model simulation reks.
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Figure 4.2: Measured voltage clamp (VC) traces without pregse averaged for 5
cells in the lower and higher voltage ranges. The holding pattial was -70 mV, the
voltage step was applied from 10 to 40 ms.

In Fig. 4.2 it can be seen, that as the value of the clamping tage step increases,
the amplitude of the inward current decreases distinctly. fiis can be either related
to the inactivation of sodium current, or rather to the overhpping of sodium and
fast potassium currents, which are more active at higher walges. As it can be seen
in Fig. 4.2, the inward current related to sodium current appars suddenly in the
range of -20, -40 mV - which indicates a steep slope in the aetiion dynamics of
the sodium current. Furthermore the fast decrease after theositive local maxima
suggests fast inactivation dynamics of the A-type potassi current and higher
powers of the inactivation variable corresponding to thisanductance.
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Figure 4.3: Comparison of VC traces (step to 10 20 30mV fromG ™mV) without and
with prepulse in the case of cell No.2. The prepulse facilitss the recovery from
inactivation in the case of the fast A-type potassium currem and also in uences
slower currents. Down: Voltage clamp waveforms
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Fig. 4.3 clearly indicates that the application of prepulséacilitates the recovery
of the inactivation variable of the fast A-type current and hcreases it's amplitude.
It is worth to observe that the application of prepulse also mderately a ects the
sustained component of the outward current. Since measurent data of several
cells were available, but VC traces with prepulse were not gerded in all of the
cases, the averaged VC traces without prepulse were used asib for parameter
estimation procedure. Voltage clamp traces with prepulseese used to validate the
resulting model, by comparison of the measured and simulate ects of prepulse to
VC traces.

Current clamp

Regarding the current clamp (CC) measurements, various anijpide depolarizing
injected current steps were needed to elevate APs. The 30 prates of the cells are
depicted in Fig. 4.4.

200

0 50 100 150 200 250 300

Figure 4.4: The 30 pA current clamp (CC) traces of the cells &-(from up to down).
The resting potential values of the cells were: -71, -69.Z3, -79, and -53 mV.

4.3.3 Parameter estimation of the GnRH neuronal model

The parameter estimation problem of neuronal models is a valy studied area in
neuroscience literature. The diversity of models, howeveimplies a broad range
of approaches and solutions that are sometimes di cult to aply for other type of
neurons or estimation tasks.

In addition, regarding membrane properties, GnRH neurons ffim a heteroge-
nous population [138], which implies that cells with di er@t functionality may be
described by models with signi cantly di erent parameters

The basic articles, which describe the parameter estimaticof Hodgkin-Huxley
type models have been published by Tabak et al. [145] and Wilgret al. [165].
The article of Lee et al. [102] analyzes the e ect of simplifiyg assumptions on the
results of parameter estimation, and provides a promisingrgblem-reformulation
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based numerical method in the case of VC measurements. Hauet al. [63] describe
a synchronization-based method based on CC measurementdieTvery interesting
paper of Tien et al. [148] focuses on bursting neural modelsdauses a geometric
approach. The paper [74] provides a statistical method fohe parameter estimation
of multicompartmental models. Despite the above valuableavk, however, there is
a lack of mathematically and algorithmically well founded prameter estimation
method for neuronal models, that is able to take into accourttoth the qualitative
and guantitative aspects of measured data.

The method proposed in section 3.5 can not be used in this caséne primary
reason for this is, that the solvability properties of the ajebraic equations described
in Section 3.5.1 signi cantly deteriorate with such an inogase in the number of ionic
channels. At second, the available voltage steps in the measment results are not
long enough to provide reasonable values of steady-statarents.

The basic membrane dynamics-model is considered to be adeéfe, if it ap-
proximates available measurement data qualitatively andugntitatively well. This
observation is used later on to formulate an appropriate obgtive function for the
parameter estimation. Furthermore we require that the modearameters reproduce
values known from the literature in a satisfactory manner.

In the following we describe the parameter estimation prose in the case of our
model.

The estimated parameters were the membrane capacitanc€ in (4.1), the
maximal conductances) wherei 2 f Na;A;K;M; T;R;L;leakNa;leakK g, in Egs
(4.4), and the activation/inactivation parametersVi—,,, ; K ai; Cpase, ; Campy ; Yai; Vmax
in (4.3). This, all together, means 88 parameters.

The algorithmic part of the parameter estimation procedureninimizes an objec-
tive function that is a function of the parameters to be estimted, i.e. an optimization-
based estimation procedure is used [72]. A multistep recius parameter estimation
approach has been applied that combines standard optimizah based steps with
physical qualitative considerations. The objective funabns and the algorithm for
parameter estimation can be found in section 13.1 of Appenxdk.

It is important to note, however, that the algorithmic parameter estimation
method had to be completed with heuristic elements, that areased on the prior
gualitative knowledge on the system. The main aim of these eqis was to avoid
local minimum points of the objective functions and to reprduce those qualitative
features of the model behavior, which inhibit signi cant plysiological importance,
and, according to our observations, can not be captured wddy the numerical op-
timization methods. These features were the sharp action fEmtials and partially
the signi cant hyperpolarizations after the APs.

The parameter estimation was carried out using the data avaged for all the 5
cells. The voltage clamp traces could be interpreted withéwany problem, and the
2-norm based optimization could be applied for the averagddaces. To increase
the validity of the model, our approach was to take both voltge and current clamp
traces into account during parameter estimation. Currentlamp (CC) traces in this
case were taken into account in the way, that the model shouldave had similar
ring properties as the average cell population - see Fig. 3L.. This meant, that the
average number of APs, and the average depolarization anddgrpolarization values
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of the recorded CC traces in response to 30pA excitatory cemt were compared
to model simulation. The value of 30pA was chosen, becausastiCC trace was
available in the case of all the cells, and in response to thisirrent 4 of the 5 cells
red action potentials.

Initial values for the optimization

Before applying the optimization algorithm, intuitive rough-tuning of the activa-
tion/inactivation parameters (parameters of the Boltzmam and Gauss functions)
and conductance values was performed to capture some imgort features of the
neural behavior. This way we achieved that the model qualitevely matched the
VC traces in the whole analyzed voltage range. In additionhe sign of the currents,
the appearance and approximate time of local maximum in thersulations matched
measurement results, too. Furthermore, the proper choicéioitial parameter values
ensured that model is able to re action potentials in respose to exciting current
about 30 pA.

This preparation proved to be necessary for convergence to acceptable opti-
mum. This initialization step demands signi cant knowled@ of the model and of
the measured data, but can not be avoided because the modekravery complex
bifurcation structure and therefore can undergo large suéd qualitative changes in
its response to identical input by changing slightly the paameters. This suggests a
very small attracting region in the parameter space aroundhe optimum.

The above laborious rough tuning procedure was mainly baseh qualitative
considerations. In addition to the assumptions which prodeed an acceptable repro-
duction of the VC traces in wide voltage range (especially dow voltage values),
the intuitive initialization of activation parameters was based on decomposition of
the CC trace. The considered parts of the CC trace are shown kig 4.5. From dif-
ferent parts of the CC trace, the initial values of di erent parameters were roughly
estimated as follows.
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Figure 4.5: Membrane potential during CC (30 pA) - model simation. The number
and shape of APs show good agreement with measurement result
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1. Our simulation studies show that theresting potential is mainly determined by
the potassium and the low thresholdCa (gr) conductances, their steady-state
parameters M, ;h; ) and the leak conductances.

2. Injected current-induced depolarizations dominantly in uenced by the 3 potas-
sium currents, the T-type calcium current, and in minor partby the leak
currents.

3. Upstroke of AP is in uenced by Na and R and L-type Ca currents.

4. Downstroke of APand hyperpolarization is determined mainly by K currents,
especially by the recovery of A-type current from inactivabn.

5. Finally the interspike intervals are in uenced by delayed recti er and M-type
potassium currents, low threshold T-type calcium and parélly by A-type
potassium and leak currents.

The determination of suitable initial values was decompodeinto two phases.
First, the activation parameters were chosen based on intive tuning of literature
data, then the maximal channel conductances were determohérom VC and CC
data.

4.4 Results and Discussion

As a result of an iterative process of heuristic and numeritaptimization steps, a
parameter set was found, which was able to provide a good t ofC traces, and
produced the observed and desired ring properties de nechi4.2.1 at the same
time. Reproduction of both voltage and current clamp tracesybneuronal models
is not prevalent in literature. The estimated model paramedrs can be found in
Appendix D (section 13.3.1).

An other set of parameter values described in 13.3.2 was ustedreproduce
bursting and analyze some of the bursting properties of the adel. Bursting is
detailed in subsection 4.4.3.

If we compare the results with literature data, we can make #following obser-
vations.

2 The activation and inactivation curves of the A-type K current in the model
show reasonable agreement with the results published by [33-urthermore,
the voltage-dependence characteristics of the activatidime constant of ¢ma
of 1o in higher voltage ranges (above 0 mV) are in good agreementthvihe
results of Luther et al. [112] regarding hypothalamic celldn the lower voltage
ranges the activation time constant published in [112] exeds the one of the
model by 1-4 ms. The inactivation time constants of the modehow signi cant
di erence (20-30 ms) in the lower voltage ranges (about -40\f) compared to
this work.

2 The activation and inactivation curves of R-type C&" current are in good
agreement with the results of Kato et al. [80]. The amplitudef Ca&* currents
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in the case of VC simulations is similar compared to measuremt results of
the article [80].

2 The characteristics of the T-type LVA C&* current are in good agreement
with the results of [146].

4.4.1 Voltage clamp results

In Fig. 4.6 the comparison of the averaged VC traces and the me simulations
can be seen. The holding potential was -70 mV.
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Figure 4.6: Measured and simulated VC traces correspondit@voltage steps of -40
-30 -20 and -10 mV and to voltage steps of 0 10 and 20 mV.

As it can be seen in Fig. 4.6, the model performs better in the edium and
high voltage ranges. The steady-state and pre-steady statarrents are well t, and
the dynamics of the transient currents are quite reasonablyaptured in the case of
approximately half of the traces. Furthermore, in some casgafter the end of the
voltage step, at 40 ms, signi cant tail currents appear in tle simulations, which are
not con rmed by measurement results.

E ect of prepulse

Because VC measurements with prepulse were not available &l of the cells, the

prepulse VC data were not used for the parameter estimationrgcess. Instead,
these measurements were used for model validation. In Fig.74where the prepulse
response of the model is depicted, it can be seen that the etesf prepulse on the
model, is qualitatively the same as observed in the case ofllc& depicted in Fig

4.3: it moderately enhances the recovery of the A-type cumg and in general it

increases the amplitude of the outward K current. Furthermore the quantitative

degree of the increase is approximately the same as obserirectheasurements.
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Figure 4.7: Simulated VC traces with and without prepulse inthe case of 10, 20, 30
mV voltage steps. Down: voltage clamp waveforms.

4.4.2 Current clamp results

It should be noted that the model parameters were estimatedsing both VC and
CC traces, while CC measurements were only available for onarrent step value
(30 pA). The simulated CC trace in response to a 30 pA currentep is depicted in
Fig. 4.5. In contrast to the VC traces where the simulated rggnses were compared
to the average measured responses, in the case of CC only tharacteristic features
of the measured and simulated CC traces were compared. Theddcteristic values
(number of APs, depolarization and hyperpolarization vales) of the simulated CC
trace are compared with the average values corresponding® measured CC traces
(depicted in Fig. 4.4) in Table 1.

Table 4.1: Average characteristic values of measured andhsiated CC traces, in re-
sponse to 30 pA: resting potential (RP) irmV, number of APs (APs), depolarization
value (DP) in mV, hyperpolarization value (HP) inmV.

RP APs DP HP
measured -69.05 2.8 43.25 -86.75
simulated -72.1 3 4293 -75.08

The results show that the model can reasonably capture the@sability properties of
the GnRH neuron in this case of injected current. The restinggiential, the number
of APs, the average depolarization amplitude, and the avega time between the APs
in the simulation results show also good agreement with measment data.

On the other hand, while the model reproduces the charactstic sub-baseline
hyperpolarization, it can not describe the hyperpolarizabn amplitudes well. The
reason for this may be the lack of Ca activated K* channels, however it is stated
in [155] that [C&*]; levels reached during spontaneous AP ring are not su cient
to activate large and small conductance CGéa-activated K* channels. In the case
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of bursting these channels could possibly improve the degition of sub baseline
hyperpolarization.

The simulations also showed, that hyperpolarization is detmined dominantly
by the delayed recti er K-type and non-inactivating M-type K* currents, and by
the recovery of A-type K current from inactivation. Furthermore the deactivation
and inactivation of high voltage activated C&" currents, as well as that of the
Na* current turned out to be essential for the sub-baseline hypeolarization. The
higher powers of the activation variables of fast G4 currents - similar to the model
published by Fletcher et al. [46] - facilitates this fast deztivation.

Figure 4.8: Simulated CC traces in the case of various amplde injected currents.
The current injection starts at 50 ms and ends at 250 ms. The rdel reproduces
the increase in ring frequency in response to the increase injected current. The
resting potential is about -72mV.

Furthermore, as one increases the injected current in thensulations, the ring
frequency increases (see Fig. 4.8), as it could be observedCiC measurements.

4.4.3 Bursting properties of the model

As it is described in [29, 30, 103], bursts and prolonged epites of repetitive action
potentials contribute to oscillatory increases in intrackular Ca?*, which determine
the secretory pattern of GnRH [141]. According to [153] and $6], which describe
results corresponding to cultured cells, the burst formatn ability of GnRH neurons
is relevant also in the case of individual cells, not connextd in a neuronal network.

Several results support the hypothesis, that bursts in GhnRHeurons are con-
nected with depolarizing afterpotentials (DAPS) [98]. Thaesults of Chu et al. [27]
show that these slow DAPs are connected with TTX dependent dmum conduc-
tances.

As it has been described in section 4.2.1, our aim was to crea model which is
able to describe bursting. The resting potential of the basimodel, which showed no
bursting properties, was about -70 mV as depicted in Fig. 4.%\s described by Suter
et al. [142], the average resting potential of GnRH neurons dlh generated bursts
was about -60 mV. This data served as a basic guideline in thask of parameter
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modi cation to achieve bursting. The basic parameter set athe bursting model is
described in Tables 13.3 and 13.4 in section 13.3.2 of AppenD. In the simulations
a 2 ms wide 100 pA pulse was applied at 50 ms to evoke burstingh€él simulation
result of the basic bursting model is depicted as the rst tree in Fig. 4.10.

Furthermore we have to note, that the average ring frequencin the burst
simulations ranged from 33 to 40 Hz, which is higher comparéalthe burst frequency
described in [142] and [98]. In general it can be stated thateé bursting of the model
IS quite sensitive to parametric changes, and bursting carebeasily terminated or
turned into a continual ring pattern.

Dependence on T-type Ca ?* current

The sodium conductance of the model is not able to reproduc@G600 ms DAPs
as described in [98] according to the observed simulationstdts. However, the
T-type Ca?* current in the model, which inhibits slow deactivation featires, and
interacts with the A-type current during after-hyperpolarization, can produce short
depolarizing oscillations following the APs, which can see as basis for bursting.
Reducing the maximal conductance of this current can causeetabrupt termi-
nation of bursting, as depicted in Fig. 4.9. These simulatioresults indicate that
the model predicts a possible mechanism of bursting, whichlhbased on T-type C&'
currents. This hypothesis of course requires further experents for validation.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4.9: Reducing the T-type C&" current (& = 10:79 nS) leads to the short-
ening of burst length @) compared to basic burst simulation &) (g = 10:8 nS).
Further reduction of g (10.2 nS) leads to the termination of bursting ¢). The depo-
larizing wave after the AP can still be observed in this casélhe baseline potential
was about -60 mV

In uence of the Ca 2* currents on the length of burst

Model simulations show that not only T-type, but other C&* currents in uence the
bursting behavior. If we decrease the R-type C& conductance of the model by
0.02 nS, the length of the burst decreases (compared to thestrtrace of Fig. 4.9),
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as it can be seen in the rst trace in Figure 4.10. Increasinchits conductance (by
0.01 nS) implies an opposite e ect, as depicted in the secotrdce of Fig. 4.10.

The L-type Ca?* conductance a ects bursting in the opposite way. If the con-
ductance is decreased the length of the burst increases, ande versa.
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Figure 4.10: The R-type C&" conductance enhances the burst length:a)l gz =
1083S, (b g = 10:86nS. The L-type conductance shows an opposite e ect: If
the conductance is decreasedy( = 13nS), the burst length increases ), and if the
conductance is increasedy = 15nS) , the burst length decreasesd).

The modulating e ect of the L-type Ca?* current in the model simulations is an
interesting result, which can be the subject of further simation and experimental
studies.

In uence of the K * currents on the length of burst

Farkas et al. [43] analyzed the e ect of estrogen in the casé GT1 cells, and
found that estrogen modulates (increases) the expressiditlre Kv4.2 subunit, which
contributes to the function of the A-type K* channels. This might be interpreted
as an increase in the parametegs. We can see in Fig. 4.11 that the maximal
conductance of the fast A-type K current is able to control the length of the bursts
in the case of this parametrization. In the case of tracea] , §, was increased to
3751nS, which reduced the burst length, compared to the referencase shown in
(a) of Fig. 4.9.

DeFazio et al. [35] described that estradiol strongly in ueces the excitability of
GnRH neurons in the case of ovariectomized mice. This articldso describes that
estrogen signi cantly a ects the inactivation characterstics of A-type K* current,
by depolarizing the voltage at which the current inactivats. The activation curve
Is also a ected but in a less serious fashion.

With the proposed model one is able to test whether the incread cell excitability
(which should lead to increased bursting activity) can be aeed by these e ects of
estrogen on activation curves of the A K current. In trace (b) of Fig. 4.11 we
can see, that shifting the activation curve of the A-type K current to the left (by
decreasing theV,-, parameter of the steady state curve by 0.02 mV) decreases the
length of the burst. Trace () depicts that increasing theV,-, parameter of the
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Figure 4.11: @) increase ofgs from 375 to 375.1 nS reduces the burst length b)(
change ofV,-, of m; of the A-type current to -33.22 from -33.2 and increasing the
V1=, parameter ofh; curve (c) from -61.5 mV to -61.47 mV acts in a similar fashion.
(d) Decrease oWV,-, of h; of the A-type to -61.501 signi cantly increases the length
of the burst. (e) Modulation by M-type current: The reduction of §, from 4.7 mS
to 4.69 mS increases burst length.

inactivation curve by 0.03 mV has similar e ects. In contrag decreasing theV,-,
parameter of the inactivation curve ofl 5 can lead to signi cant increase in burst
length (trace (d) in Fig. 4.11).

It is likely that the combination of multiple e ects of estrogen is necessary to
increase cell excitability, and this complex e ect can not b captured by manipu-
lating single parameters of the model. For example the ressilof Farkas et al. [43]
indicate that estrogen also a ects the K-type potassium cuent.

Finally, the e ect of M-type K * current was analyzed. Decreasing the M-type
conductance also increases burst length, as expected (seee €) in Fig. 4.11).

In fact, further in silico, in vitro and in vivo experiments are necessary for the
reasonable description of estrogen e ect on GnRH cell elegphysiology.

4.5 Conclusions and future work

As the rst step of a bottom-up procedure to build a hierarchtal model of the GnRH
pulse generator, a simple one compartment Hodgkin-Huxleygde electrophysiolog-
ical model of the GnRH neuron was constructed. The parameterd the model
were estimated using both VC and CC data originating from ckd in hypothalamic
slices. The initial values of parameter estimation were detmined using literature
data and qualitative biological knowledge. The parameterséimation process itself
was carried out as a combination of algorithmic (APPS) and nraual methods to
reproduce the voltage clamp traces and ring pattern obseed in the measurement
data.

The resulting parameter set provides a good tin terms of thgualitative features
of neuronal behavior (resting potential, excitability, d@olarization amplitudes, sub-
baseline hyperpolarizations), and an acceptable numerica of VC measurement
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results. Further measurements are planned with specic chael blockers, that
would help in further tuning or even re-parametrization of he model.

Applying parametric changes, which lead to the increase ofabeline potential
and enhance cell excitability, the model becomes capabletirsting. The proper-
ties of bursting behavior could be of high impact regardinghysiological functions
corresponding to hormone release. The bursts experiencadiodel simulations are
dependent on C&" currents, and are strongly a ected by the parameters of the
A-type K™ current. Further experiments are necessary to test whethehis type of
bursting can really appear in GnRH neurons, or this phenomenas an arti cial in
silico secondary product of the model.

The resulting model may be used as reference in the developinaf future models
for the GnRH neuron. As soon as an appropriate Hodgkin-Huxletype model of
membrane dynamics has been identi ed and validated, it wilbe completed with
further elements in uencing intracellular Ca&* dynamics (models of intracellular
compartments such as the endoplasmic reticulun@a bu ers [136], andIP 3 signaling
[173, 149]), which probably exert an important impact on hanone release.

Additionally, the model will be extended to take the complexe ects of estradiol
on the dynamics of membrane potential into account [26].

In addition to improve the one-cell model, a further aim is talescribe the GnRH
pulse generator network of the hypothalamus. The novel relési of Campbell et al.
regarding dendro-denritic bundling and shared synapsestiveen GnRH neurons [22]
may serve as a good basis for such work, providing informati@bout the structure
and possible interaction mechanisms between GnRH neurons.
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Chapter 5

Summary

In this chapter, the main results of the thesis are summaride

ODE models of intracellular signaling pathways: rapid and slow transmissi¢@hap-
ter 2)
A simpli ed dynamic model has been developed for the desctipn of the
dynamic behavior of G protein signaling, which takes into aount the e ect
of slow ( -arrestin coupled) transmission, RGS mediated feedbackgu@ation
and ERK-phosphatase mediated feedback regulation. The panaters of the
model have been determined via numerical optimization.

It has been shown, that the proposed reaction kinetic model the system gives
rise to an acceptable qualitative approximation of the G prigin dependent
and independent ERK activation dynamics that is in good agreeent with
the experimentally observed behavior.

Identi ability analysis of Hodgkin-Huxley type neuronal model¢Chapter 3)
Identi ability properties of a single Hodgkin-Huxley type voltage dependent
ion channel model have been analyzed under voltage clampccimstances.
With formal identi ability analysis, it was shown that even in the simplest case
when only the conductance and the steady state activation dninactivation
parameters are to be estimated, no identi able pair from thahree can be
chosen.

In addition, a possible novel identi cation method was propsed, which is
based on the decomposition of the parameter estimation prieon in two parts.

The rst part includes the estimation of the maximal conductince value and
the activation/inactivation parameters from the values ofsteady state currents
obtained from multiple voltage step traces. The use of stegdstate currents
allows the estimation of the rst parameter group independaly of the other

parameters. This parameter estimation problem results in system of nonlin-
ear algebraic equations, which was solved as an optimizatiproblem.

The second part of the parameter estimation problem focuses the param-
eters of the voltage dependent time constants, and is alsorfwlated as an
optimization problem. The parameter estimation method is dmonstrated on
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in silico data, and the optimization process was carried outsing the Nelder-
Mead simplex algorithm in both cases.

The results of the analysis were used to formulate explicitriteria for the
design of voltage clamp protocols.

Hodgkin-Huxley modelling of GnRH neuronal electrophysiolog@€hapter 4)

A simple, one compartment Hodgkin-Huxley type electrophyslogical model
of GnNRH neurons has been presented, that is able to reasonalgproduce
the voltage clamp traces, and the most important qualitatie features in the
current clamp traces in the same time. The corresponding glitative features
of the current clamp trace were baseline potential, depolaation amplitudes,
sub-baseline hyperpolarization phenomenon and averageng frequency in
response to excitatory current. These features were obsetMn GnRH neurons
originating from hypothalamic slices.

The parameters of the model have been estimated using avezdg/C traces of
multiple GnRH neurons, and characteristic values of measwteurrent clamp
traces. Regarding the resulting parameter values, in most tfe cases a good
agreement with literature data was found.

Modi cation of model parameters makes the model capable oluksting, the
e ects of various parameters to burst length have been anagd.
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Chapter 6

Possible application area of the
results and future work

Because the results and conclusions of the described worle @ummarized at the
end of each chapter in dedicated sections, this Chapter ofdhthesis reviews the
results from the point of view of practical applicability, and describes some future
perspectives of the work done.

6.1 Possible application area of the results

In several disorders of reproductive system (which can beused for eg. by poly-
cystic ovary syndrome [5], long lasting usage of hormonalrttaceptives, etc.), the
hormonal cycle is disturbed, or it can even disappear. In tise cases, to restore fertil-
ity, one possibility is the administration of the key hormore GnRH, or it's analogues
to the patient. However, the oral administration of such meitines implies a slow
imbibition, which can lead to unwanted side e ects. Continous high concentrations
of GnRH (decapeptide preparations) will inhibit menstrual gcle, no restoration of
fertility occurs. After publication of a study that showed increased risk of ovar-
lan cancer in women who used clomifene longer than 12 montlise Committee
on Safety of medicines in the UK has recommended that womenaositdd not take
clomifene for longer than six months. One possible solutida this problem may be
the application of portable GnRH pumps (see the gure 6.1), wikh are able dose the
medicines in a pulsatile way directly into the blood, achiemg a time-concentration
pro le close to the physiological one [83, 82]. However, theptimal usage of these
devices would require a feedback, which takes the dynamidstiee drug e ects into
account. Models like the one provided in chapter 2, may help ithe development
and application of such devices.

In addition to the signi cance of arrestins and slow transngsion in GnRH signal-
ing, the importance of the slow transmission becomes evidarowdays in more and
more elds of physiology and medicine. Nowadays health expe refer to diabetes
mellitus as the disease of the future. According to the statiics of the World Health
Organization (WHO) an increase of the adult diabetes populain from 4% (in 2000,
meaning 171 million people) to 5.4% (366 million worldwide$ predicted by the year
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Figure 6.1. patient wearing a GnRH pump

2030 [163]. Several new results point to the possibility, # -arrestins play a cen-
tral role in diabetes mellitus and insulin resistance [14Q,30, 111]. Thus our results
may be useful in the modelling and possible therapeutic dgsi corresponding to
this disorder.

As stated before, the neuronal model of GnRH electrophysigip presented in
Chapter 4 is intended to be later used in hierarchical modeldescribing the hy-
pothalamic GnRH pulse generator structure. A physiologichl relevant model of
the GnRH pulse generator would signi cantly enhance the usg@hess of mathemat-
ical models corresponding to the reproductive neuroenddame cycle. In addition,
such models can be applied in computational studies of neua interactions. A
composite model of 2-3 neurons would be able to describe amady many kinds of
interactions, including for example endocannabinoid sigifing.

The parameter estimation method proposed in chapter 3 can lused in the syn-
thesis and identi cation of neuronal models. Furthermorehese results provide bases
for the future design of voltage clamp protocols in electrdyysiological measurements
dedicated to computational modelling.

6.2 Future work

A further re nement possibility of the signaling model deskdbed in chapter 2 is to
include regulation mechanisms of GRK's. In fact this model cabe easily extended
by reactions, which describe the ERK induced GRK activation,dr example. The
e ect of such considerations in this model's dynamics coulthen be analyzed and
compared to physiological activation patterns.

Furthermore, a typical qualitative dynamical behavior of he model structure
could be validated by various tests. For example, if we nd a@acceptable agreement
with physiological activation patterns, we could considably decrease the concen-
tration of several key elements in the mathematical model,na then analyze the
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activation pattern dynamics. Moreover, we can also validatthese results obtained
with the activation patterns on si-RNA treated cells, where lhe corresponding pro-
tein is eliminated from the system.

Regarding the identi ability results detailed in chapter 3, a sound sequel of
the work would be the anlysis of a Kuo-Bean type voltage depéent ion channel
model [99, 155], where, in contrast to Hodgkin-Huxley typen channel models, the
processes of activation and inactivation are not assumed be independent, which
Is a more realistic consideration.

The resulting GnRH neuronal model described in chapter 4 mayehused as ref-
erence in the development of future models for the GnRH neuroAs soon as an
appropriate Hodgkin-Huxley type model of membrane dynamschas been identi ed
and validated, it will be completed with further elements inuencing intracellu-
lar Ca?* dynamics (models of intracellular compartments such as thendoplasmic
reticulum, Ca bu ers [136], and IP 3 signaling [173, 149]), which probably exert an
important impact on hormone release. These new elements lzadly require reaction
kinetic models, which describe the e ect of bu ers in the cybsol and in the endoplas-
mic reticulum (ER) [136]. Furthermore, such a model could beompleted with the
description of G-protein related signaling events, which act membrane dynamics,
corresponding to preliminary results on the dynamics of Grptein signaling [34].

Additionally, the model will be extended to take the complexe ects of estradiol
on the dynamics of membrane potential into account [26].
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Chapter 9

Appendix A: The reproductive
neuroendocrine system and the
hypothalamus-pituitary axis

9.1 The female hormonal cycle in general

The system of ovarian and pituitary hormones regulates and amtains the men-
strual cycle in adult women. Although cycles are usually beteen 25 and 30 days
apart, a woman's normal cycle can range anywhere from 22-4@yd long. The
menstrual cycle can be divided into two phases: the follicai phase and the luteal
phase separated by ovulation and menstruation. During the emstrual cycle, the
anterior pituitary a ected by Gonadotropine-releasing heamone (GnRH) secreted in
the hypothalamus, secretes hormones in a pulsatile way tdraulate the growth and
development of ovarian follicles: Follicle-stimulating brmone (FSH) and luteinizing
hormone (LH).

Consequently, cells in the the ovaries secrete hormones @bha ect the secretion
of pituitary hormones and GnRH: Estradiol E), progesteron £,) and inhibin (1h).

The simultaneous change of ovarian and pituitary hormonevels and the change
of the a ected tissues during the cycle is depicted in 9.1. §ures 9.2 and 9.3 are
depicting some of the underlying interactions.

The detailed description of the ovarian interactions excels the possibilities of
this study, but we have to mention some basic information to novide basis for a
general insight to the whole system's structure. The elemtnof the hypothalamus-
pituitary axis, which are more in the focus of this thesis ara@liscussed below in
9.2.

9.1.1 Cell types of the ovary

Theca cells , which are in uenced mainly by LH, secrete androgen hormor{gestos-
terone). Following ovulation theca cells are forming the ¢pus luteum, and secrete
progesteron. The aromatase enzyme of tlgranulosa cells is able to turn testos-
terone into estradiol. Furthermore the granulosa cells ofvarian follicles in mammals
produce inhibin, which hormone together with estradiol reglates the oestrous cycle.
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Figure 9.1: The hormonal and the menstrual cycle

9.1.2 Ovarian interactions

The physiological explanation for the interplay and e ect 6 ovarian hormones has
been formulated by Taya et al. in [147] as follows: Inhibin i& main inhibitor of

FSH secretion, a chemical signal of the number of growinglfoles in the ovary, and
thus a key hormone in determining species-speci ¢ ovulatiorates. On the other
hand, oestradiol acts as a signal of follicular maturatiomithe ovary, and a signal
determining the timing of the preovulatory LH surge.

In other words, the pituitary and ovarian hormones work togtner to release an
ovum (egg) to be fertilized. An abrupt increase in LH in resptse to rapid, high
amplitude GnRH pulses in the pituitary is required for ovulaton of an egg from the
ovaries marking the beginning of the luteal phase of the cyl

Following ovulation, high levels of estrogen and progestate secreted by the
corpus luteum feedback to the hypothalamus and inhibit GnRH glses and LH and
FSH secretion.
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If fertilization does not occur, the cycle is repeated: Cors luteum atresia with
the accompanying fall in the steroid hormones restarts theycle, allowing the slow
GnRH pulse frequency required for FSH release and recruitnesf the next follicle
[45].

Figure 9.4 taken from [131] briey summarizes the ovarian teractions, and
depicts the morphology of the ovary.

FSH | pituitary ; LH

androgens

granulosa cell
theca cell

germ cell

Figure 9.4: Summary of endocrine, paracrine, and autocrirgctions in the ovary
[131]
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9.2 The Hypothalamus-Pituitary axis

Gonadotropin releasing hormone (GnRH or LhRH) is the rst key lormone of re-
production in vertebrates. In many species, three forms off®H and three cognate
receptors have been described. GnRH | regulates the hypotaalo-pituitary axis,
while GnRH Il is thought to have a role as a neuromodulator a eting reproductive
behaviour and GnRH Ill (salmon GnRH) functions only in teleosf120]. Although
three cognate receptors have evolved, in man and several etrspecies GnRH |
and Il interact with the type | GnRH receptor (GnRHR) [120], sine the type I
GnRHR is not expressed as a mature and functional receptor @2 The human
type Il GnRHR gene is disrupted by a frameshift and prematuretsp codon, but
remains transcriptionally active, and it is becoming incrasingly apparent that a
conventional type Il GhnRHR system is not present in man [120].

The neuroendocrine cells in the hypothalamus secrete GnRH anpulsatile way,
closely associated with concurrent increases in multiunglectrical activity in the
mediobasal hypothalamus (MUA volleys) [166]. Neuroendane regulation of GnRH
release in induced ovulators is described in [4].

Figure 9.5: Figure from [6]: The hypothalamus and the pitudry and the corre-
sponding neuroendocrine tissues

76



A mathematical model describing the GnRH pulse generator isedcribed in
[21]. GnRH pulse frequency varies considerably over a normalenstrual cycle,
the pulse intervals are on the scale of 8-240 minutes. GnRH &Ves its e ects at
the pituitary gonadotropes by interaction with a heptahelcal G-protein coupled
receptor (GPCR) [135].

The gonadotropin cells in the adenohypophysis which are inenced also by
peripherial hormones E;, P4, Ih), responding to GnRH signals from the hypotha-
lamus, synthetize and release the gonadotropin hormoned land FSH, which play
important role in the growth and maturation of follicles. In particular, a sudden
rise in LH serum concentration known as the LH surge triggers/ulation. Secretory
rates of LH and FSH depend upon the frequency and the amplitecbf GnRH pulses
[164]. Gonadotropes represent only about 10% of pituitaryetis and are divided into
monohormonal cells (18% LH and 22% FSH cells) and 60% multinoonal (LH +
FSH) cells.

The hormones LH and FSH are composed of three genes: A comm&ment
called ®subunit, and aFSH or a LH  subunit. Many results detailed below
provide basic for the hypothesis, that the control of the exgssion of these three
genes is controlled separately=SH is preferentially transcribed at slower GhnRH
pulses whereakH and ® preferentially transcribed at more rapid pulse frequencse

A pulsatile pattern of GnRH stimulation is essential for nornal secretion of
luteinizing hormone (LH), while both continuous and fast#fequency GnRH stim-
ulation result in a paradoxical decrease in gonadotrope m@nsiveness known as
desensitization.

9.2.1 The gonadotropin-inhibitory system

In 2006 a new pituitary-related mechanism was identi ed by kKiegsfeld et al [96, 95].
An RFamide (Arg-Phe-NH,) peptid that inhibits gonadotropin release was identi-
ed, named gonadotropin-inhibitory hormone (GnlH). Their results have shown,
that in vivo GnlH administration rapidly inhibits LH secretion. Additi onally GnlH
neurons form close appositions with GnRH cells, suggestingett means of GnRH
modulation. Furthermore GnlH cells express estrogen redep-® and exhibit roboust
immediate early gene expression after gonadal hormone diliation.

9.2.2 The e ect of the ovary on pituitary

The ovary producesk,, P, and Ih, which in uence the pituitary's synthesis and

release of the gonadotropin hormones during the various g&s of the cycle. Basal
gonadotrophin secretion during the normal menstrual cycles predominantly under

a negative ovarian e ect. It is suggested that in contrast toFSH, the secretion of
LH in response to GnRH is controlled by di erent ovarian mechaisms during the

two phases of the menstrual cycle [2].

9.2.3 The e ect of gonadal steroids on gonadotropin cells
Estradiol - E»
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It has been assumed that the increase in secretion of estraldihat occurs following
the demise of the corpus luteum is responsible for the evetgading to the ovulatory
surge of gonadotropins. The increase in media concentrat®of LH as response to
E, are not surprising in light of the fact that there is an estrogn response element
(ERE) upstream of the coding region in the rat LH -subunit gene, and that this
element confers positive regulation of the gene [137]. Fhermore, estradiol sup-
presses phosphorylation of cyclic adenosine 3*,5*-monasphate (CAMP) response
element binding protein (CREB) in the Pituitary [41].

E ects of E, on GnRHR and on Hypothalamus

Estradiol increases synthesis and insertion of GhnRH recepto(GnRHR) into the

membranes of gonadotropes. This is a relatively rapid respse with the increase in
number of membrane receptors occurring in 4-6 h in sheep [S56Jowever, Nett et
al. reported that concentrations of mMRNA for GnRH receptor inpease prior to an
increase in circulating concentrations of estradiol [124]

Furthermore, estradiol appears to stimulate a sustained seetion of GnRH from
the hypothalamus that is initiated 12-15 h after administraion of estradiol, sev-
eral hours after the increase in GnRH receptors on gonadotrep [118]. Thus, in
inducing a pre-ovulatory surge of gonadotropins, estradiast increases sensitivity
of the pituitary gland to GnRH and once gonadotropes are maxially sensitized, it
then causes a dramatic increase in the amount of GnRH beingeabked into the hy-
pophyseal portal circulation to stimulate the massive reese of LH needed to induce
ovulation.

The duration of the increased secretion of GnRH induced by eatliol supersedes
the duration of LH surge.

Thus, it has been speculated that the surge is terminated &égr because the
pituitary gland becomes insensitive to the continued stimation by GnRH, or be-
cause it becomes depleted of releasable stores of LH, or boith this regard, Nett
et al. have shown that approximately 75% of the LH containednithe pituitary
gland of ewes is released during an ovulatory surge. MoregvBy the end of the
massive increase in LH secretion during the ovulatory surgthere is a decrease in
the number of GnRH receptors in the pituitary gland of ewes [18, which, as men-
tioned before, occurs well before the end of the increasedrstéion of GnRH. Thus,
it appears that the termination of the LH surge is strongly aected by the combi-
nation of down-regulation of GnRH receptors and depletion akleasable stores of
LH [124]. The e ects of other gonadal steroids are describéater.
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The e ects of estradiol on the gonadotropin-inhibitory sygem is described above
in 9.2.1.

Progesterone - Py,
In vivo progesterone decreases the frequency of GnRH pulsesrsted into the
hypothalamic- hypophyseal portal circulation [79].

Furthermore, progesterone decreases numbers of recepfor&’sSnRH and amounts
of MRNA encoding for the GnRH receptor in cultured ovine antear pituitary cells
[170]. We infer from these data that progesterone can act dutly on the pituitary
gland to in uence responsiveness to GnRH. Moreover, Nett etl.a were unable
to stimulate an increase in number of GNnRH receptors in the aeatior pituitary by
administering estradiol to ewes during the luteal phase ohé estrous cycle. This
implies that progesterone can block the positive e ect of &@sadiol on GnRH receptor
gene expression [150].

The fact that concentrations of mMRNA for GnRH receptor increas prior to an
increase in circulating concentrations of estradiol [150¢ad some to hypothesize
that a decrease in concentrations of progesterone may be ionfant for initiating
events that lead to the pre-ovulatory increase in sensitityi of the pituitary gland to
GnRH. To support this supposition, there have been several plications indicating
that progesterone is a negative regulator of the GnRH receptgene in farm animals
[33, 20, 150].

Expression of the GnRH receptor gene and numbers of GnRH recer# in the
pituitary gland are lowest during the luteal phase of the esbus cycle when concen-
trations of progesterone are elevated [20].

Inhibin

Two forms of inhibin (A and B) are expressed in the ovaries of ost species examined,
including pig, human, monkey, rat, and mouse. Both inhibinlf) and estradiol (E>)
use separate and distinct mechanisms to decrease productal FSH 60%-80% while
increasing receptors for GnRH (GNRHR) 400%-600% in ovine pitary cultures [53].

Evidences for an endocrine role for ovarian inhibin in suppssing pituitary FSH
secretion are summarized in [86].

A highly sensitive two-site assay format for inhibin B was desloped and applied
to the measurement of serum inhibin B during the human mensial cycle [58].
In contrast to inhibin A levels which were lowest during the arly follicular phase
and maximal during the mid-luteal phase, serum inhibin B lesis were relatively
high during the early follicular phase but remained very lovthroughout the luteal
phase. These intriguing observations suggest that the twa drent inhibin forms
have di erent physiological roles during the menstrual cyle.

In fact, although administration of exogenous inhibin canwgppress circulating
FSH in nonhuman primates, passive immunoneutralization stlies have been unable
to show a rise in plasma FSH following administration of intiin antisera during
either the luteal or the follicular phase of the menstrual ayle [48, 49].
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Activins
Activins are homomeric or heteromeric dimers of inhibin B daunits and are pro-
duced by a wide variety of tissues including the pituitary gind, speci cally by
gonadotropes. Activins stimulate synthesis of FSH by a dicg¢ action on pituitary
gonadotropes [116]. Once synthesized, FSH appears to bereted constituitively
by gonadotropes.

It appears that the mechanism by which estradiol inhibits sythesis and secretion
of FSH in cultured pituitary cells is by inhibiting production of activin g (the form
of activin produced by the pituitary gland).

Follistatin

Follistatin, also produced by the pituitary gland, is an acivin-binding protein and

may decrease FSH synthesis by sequestering activin [117h fact, as described
by Nett et al. in [150], in the case ofE, treatment the mMRNA concentration of
follistatin did not change.
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Chapter 10

Appendix B: Simulation results of
the basic G protein signaling model

10.1 Simulation Results of the basic model

The simulations were performed to test the response to a stitus att = 0, and
analyze the qualitative system response as function of thete constants. The
stimulus was simulated using an additive term in the di eretial equation related
to the ligand, which described the replacement of the ligandt the cell's surface
from its environment. Furthermore, constant maximal relaive ligand concentration
(being equal to 1) of the environment was assumed. The simtitan time was chosen
to be 20 minutes. The input of the system is depicted in Fig. 10.

The ligand concentration in the environment
T T

15

3 osk

05 I I I I I I I I I
-50 -40 -30 -20 -10 0 10 20 30 40 50
time [s]

Figure 10.1: The ligand concentration in the environment

The initial states of the system were chosen in all cases torggspond to an
inactive cell that is, no ligand was bound on any receptor, @hall G® subunit was
bound to ligand-free receptors in the form oR(G®; GDP).

Four parameter sets were used to study the qualitative modelbehavior in the
case of various rate constants. The parameters of the setearollected in Table
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Table 10.1: Parameter sets for the basic model structure

Parameter| Set 1| Set 2| Set 3| Set 4
Basic

ki 40 2 40 40
ki 40 2 40 40
ks 30 1 30 30
K 0 0 0 0
k3 0.005| 0.005| 0.2 2
ki 0 0 0 0
% 0.4 0.4 0.4 0.4
ki 0.4 0.4 0.4 0.4
ke 1 1 1 1
KL 0 0 0 0

10.1.

In all cases of the simulation the initial state was assumedsaotal inactivity
in the cell. This means that no ligand bound receptors, no age G®, etc. were
present.

The system response with thdasic parameter set 1 is depicted in Fig. 10.2.
It is seen that the ligand concentration on the cell surfacerdps suddenly at the
beginning of the transient, because the freé®; GDP -bound receptors associate
with the ligand. Later the ligand concentration returns to te value ofl, due to the
supply from the environment.
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Figure 10.2: The system response with parameter set 1

The G®j GTP activates fast in this case, and its concentration is stalided at
a constant value. The explanation for this and for the constd low concentration
of G®j GDP is that the dephosphorylated freeG® can always nd a free receptor
to re-associate with, and theG®; GDP -bound receptor is activated again by the
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ligand, which is present in a large extent. This way theG® subunit is quickly
reactivated.

The Kkq; ko, and ks parameters can be related to the speed of the association and
the coordinates of the resulting steady-state.

With the parameter set 2 , a slower association and activation dynamics cor-
responding tok; and k; is assumed.
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Figure 10.3: The system response with parameter set 2

As Figure 10.3 depicts, the ligand-receptor association @rthe G protein acti-
vation become slower, but the resulting steady-state is wersimilar to that of the
basic case.

The e ect of a faster deactivation rate k3) of G protein is analyzed with the
parameter set 3 .
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Figure 10.4: The system response with parameter set 3

The system response is seen in Figure 10.4, where the G prot&ctivation shows
a small overshoot, and it is stabilized at a lower concentran due to the faster deac-
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tivation rate. Furthermore we have to note that the further increase of the dephos-
phorylation rate k; implies even lower maxima of the G protein activation curve,
and lower steady-state concentration. The&G® j GDP concentration is strongly

increased in this case.

If the deactivation rate (k3 ) is further increased inparameter set 4 , the over-
shoot becomes more dominant, but also the peak value of actied G protein con-
centration decreases (as it can be seen in gure 10.5), and aagi steady-state is
reached in 2 minutes, which is not a good qualitative appraxiation of the physio-
logical behavior.
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Figure 10.5: The system response with parameter set 4

10.1.1 Discussion

As a conclusion from the simulation results, we can concludeat the basic model
without the inclusion of slow transmission and the regulatin of signaling is able to
describe the ligand-induced G protein activation in the cgland it can be extended
with G protein dependent signaling pathways. The ligand caentration on the
cell surface B) is aected by the ligand bounding of the receptors, and by ta
ligand concentration of the environment (the input -Len,). In this basic model
the dephosphorylatedG®j GDP can always nd a free receptor, which induces
its re-phosphorylation in the case of constant environmeat ligand concentration.
This process implies a stable steady-state of the system, which the G®; GTP
concentration remains at a signi cantly high constant leve
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Chapter 11

Appendix C: Sensitivity analysis of
the extended G protein signaling
model

11.1 Sensitivity Analysis

A simulation based sensitivity analysis of the extended medl was carried out to
analyze changes in the model output in response to parametghanges and changes
in initial values.

11.1.1 Parameter sensitivity

In the rst step, the change in the model response was analydén the case of 10%
perturbation of model parameters (rate constants). The ERK etivation curves,

like the ones depicted in Figs. 2.5 (both pathways active) @h2.6 (G protein and

~/Arrestin dependent pathways), were regarded as model respses. The change
was measured as a quadratic error between the response (tqgihospho-ERK con-

centration trajectory) in the nominal case, and the respomsin the case with the
perturbed parameter.

tfinal

S = 1000 (ERK ¥'](t) i [ERK ,1(t))? dt
0

where the overline refers to the perturbation of a certain pameter. The multi-
plication with 1000 was used to normalize the resulting vaés. Furthermore, as it
is described in 2.3.2, all curves were normalized with the ximmum value of the
nominal curve in the case of both pathways activetsjny was 60 min.

In the case of all parameters, the e ect on all three model rpenses was analyzed.
The three cases were the following

1. Both pathways active
2. Only G protein coupled transmission

3. Only -Arrestin coupled transmission
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The parameter sensitivity analysis was carried out only foparameters with
nonzero values. The results of the parameter sensitivity atysis are summarized in

table 11.1.1.
Table 11.1: Parameter sensitivity of the model response
parameter| S (Both signaling pathways)| S (G-prot) | S (slow transmission)

ki 10 30.3582 10 30.2767 10 30.0875
ki 10 “0.6616 10 40.5127 10 40.1544
k> 10 30.1720 10 30.1296 10 30.0462
k3 0.0144 0.0334 0.0004
K 0.0281 0.0916 0.1452
ki 0.0120 0.0379 0.0625
ke 0.0503 0.0929 0.0143
ki 10 40.9434 10 #0.9208 10 “0.1031
kg 0.4793 0.0176 0.9710
K 0.1970 0.0078 0.3881
k3 0.7390 0.0004 1.2937
kg 1.1905 0.0046 2.0506
kg 0.1290 0.2924 0
ki 0.0607 0.1390 0
Kio 0.1809 0.2595 0
ki, 1.5711 0 2.6568
ki, 0.3871 0 0.6505
ki, 0.6349 0 1.0339
kis 0.0178 0.0417 0.0291
kis 0.0050 0.0097 0.0075
kis 0.0912 0.0672 0.0439
Kis 0.0269 0.1087 0.0001
kis 0.0055 0.0225 0.0000
Kis 0.0065 0.0275 0.0000
ki, 3.2919 0.4954 3.7051
Kig 0.1937 0.0633 0.2704
kig 0.0750 0.0287 0.1531
K30 0.1157 0.0108 0.0646
k>, 10 * 0.8096 10 30.0039 10 30.5137
ki, 0.0002 0.0004 0.0183
K>, 10 ° 0.0281 10 °0.0234 10 °0.3128
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Discussion

As described in 2.3.1, the model is not signi cantly sensité to the parametersk; ,
ki and k3. The explanation for this is, that the value of these rate costants is
much higher (of order 2), compared to other parameters. Thisan be related to the
assumption, that the speed of ligand-receptor interactianis signi cantly higher,
than the other interactions taken into account. However, tls implies, that in later
development simpli cations may be possible regarding thegeactions.

The parameters to which the system showed also reduced saugy were in ad-
dition k3, ki, and k;,. These parameters are related to the ERK autoregulation
by ERK-phosphatase. This suggests, that in future studieshis mechanism has to
be modelled in a di erent way, or it's explicit inclusion in the model may be ne-
glected, and it's e ect may be integrated in the spontaneoudephosphorylation rate
of ERK (corresponding tokj,), which shows high sensitivity. The nal parameter
which shows reduced sensitivity i&L , the backward rate of G® GDP and Receptor
reassociation.

In addition it can be seen from the results of the parameter ssitivity analysis,
that the reactions, which correspond to the G protein couptepathway (for eg. kz ),
or regulation of G protein signaling (for eg.kj;) have much higher impact on G
protein related response, and lower e ect on slow transmiss, and vice versa (see
for eg. the rate constantki corresponding to spontaneous dephosphorylation of the
receptor-ligand complex, which inhibits slow transmissig.

11.1.2 Sensitivity to initial values

At second, the change in the model response was analyzed ie tase of 10% per-
turbation of nonzero initial values (specie concentratios). The change in the model
response was measured as in the previous subsection (1).1The results of the
analysis are summarized in table 11.1.2.

Table 11.2: Sensitivity of the model response to initial vaks

specie | S (Both signaling pathways)| S (G-prot) | S (slow transmission)
L 0.0010 0.0007 0.0009
RG®GDP 2.8972 0.7606 2.8737
GRK 0.6477 0.0240 1.3105
ERK 3.3388 0.4169 3.6353
ERKP 0.3213 0.0724 0.4001
Discussion

As rst, as we can see, it seems that the sensitivity of the mad response to ligand
concentration is surprisingly low. If we do further analys, and perturb the ligand
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concentration more (about 50%), we may observe an increadettoe numerical sen-
sitivity value of about order 2. This points to a saturation type ultrasensitivity of
the model corresponding to the concentration of the ligand.

The further rows of table 11.1.2 show, that the concentratits corresponding
to the internal state of the system (R@&®GDP, which corresponds to the receptor
number, GRK which is necessary for the initiation of slow trasmission) have quite
signi cant impact on the model response. It is not surprisig furthermore, that the
model output is highly in uenced by the initial concentration of ERK, which is the
central element of the model and furthermore it correspondsirectly to the output
(ERK p).

The initial concentration of ERK phosphatase (ERKP), which isresponsible
for the short-loop autoregulation has the lowest impact on odel response among
intracellular elements, which is in good agreement with th@arameter sensitivity
analysis described in the previous subsection 11.1.1.
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Chapter 12

Appendix D: GnRH
electrophysiology

12.1 Obtaining and preparing samples

Brains of 60-90 days old male mice were used for obtaining GnRiéurons for
measurements. The mouse was decapitated, and the brain wagpidly removed
and placed in ice-cold arti cial cerebrospinal uid (ACSF) oxygenated with 95%
0,-5% CO, mixture. Brains were blocked and glued to the chilled stagef a Leica
VT1000s vibratome, and 250-micrometer-thick coronal sks containing the medial
septum through to the preoptic area were cut. The slices wethen incubated at
room temperature for 1 hour in oxygenated ACSF consisting ¢ihh mM): 135 NacCl,
3.5 KClI, 26 NaHCG;, 10 D-glucose, 1.25 NapPO,4, 1.2 MgSQ, 2.5 CaCl., pH 7.3.

12.2 Whole-cell recording of GhRH neurons

Slices were transferred to the recording chamber, held subrged, and continuously
superfused with oxygenized ACSF. All recordings were made 23*C.

In order to visualize GNnRH neurons in the brain slices, GhnRH-&anced green
uorescent protein (GNRH-GFP) transgenic mice (kind gift by Dr. Suzanne Moen-
ter) were chosen in which the GnRH promoter drives selectiveRP expression in the
majority of GnRH neurons. GnRH-GFP neurons were identi ed in he acute brain
slices by their green uorescence, typical fusiform shap&@ apparent topographic
location in the preoptic area and medial septum.

The electrodes were lled with intracellular solution (in mM): 140 KCI, 10
HEPES, 5 EGTA, 0.1 CaC}, 4 MgATP, 0.4 NaATP, pH 7.3 with NaOH. Resistance
of patch electrodes was 2-3 M. Holding potential was -70 mV, near the average
resting potential of the GnRH cells. Pipette o set potential series resistance and
capacitance were compensated before recording.

The protocol for voltage clamp (VC) recordings was the folleing: twelve voltage
steps were applied starting from the holding potential. Therst step was -40mV
and the subsequent steps were increased by 10 mV. Durationtlo¢ steps was 30 ms,
starting at 10 ms. During the voltage clamp measurements witprepulse, a -100
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mV prepulse was applied just preceding the voltage stepsdfn 0.8 to 10 ms) with
a duration of 9.2 ms.

The protocol for current clamp (CC) recordings to activate ation potentials
(APs) was: the holding current was O pA. First the resting pagntial was measured
then current step of 10 pA for 200 ms was applied to the cellsf the 10 pA current
failed to evoke APs, it was elevated by 10 pA steps till it indoed 3-4 APs.
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Chapter 13

Appendix E: Parameter estimation
details and model parameters of the
GnRH neuronal model

13.1 Objective functions

In this section, the objective functions used for parametegstimation can be found.

13.1.1 Voltage clamp (VC) measurements without prepulse

The manipulated external input to the system was the clampig voltage Veiamp -

Square signals of di erent amplitudes were used as inputs.h& parameters of the
voltage steps were the following: The holding potential was’OmV, and voltage
steps of -40 to 60 mV were simulated with duration of 30 ms stamg at 10 ms of
the simulation, and simulation results were compared to mearement data. The
results of lower voltage step measurements (-50 and -60 mVgme not taken into
account because of the very low signal/noise ratio. The measd output was the
total output membrane current:

liot = Inat la+ Ik + I+ 17+ 1+ 1L+ leakna T lieakk (13.1)

The objective function of the estimation in VC case was the ahdard two-norm
of the di erence between the measured and simulated outpuuaents for the three

measurements, i.e.
1 X
W(Wvc = Nn Wikl g i T K (13.2)
i=1
wherep is the estimated parameter vector, andg,; andlg,; denote the measured
and model computed (simulated) total output current (as a dicrete time sequence)
for the ith measurement, respectively. Furthermorew; is the weight of theith
measurementN is the number of data points in the measurement record amnal is
the number of traces. The weightsy; corresponding to di erent voltage steps were
set higher in the case of lower value voltage steps. The reador this lies in the

observation that although the signal-noise ratio is lowenithe case of these traces, at
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physiological behavior the membrane voltage rarely reachiigh values (only during
AP-s). Thereforew; was set proportional to the maximum value of thath trace.
The sampling time of the VC measurements was 0.1 ms.

13.1.2 Current Clamp (CC)

The manipulated external input to the system was the excitabn current l¢. The
holding current was 0 pA. A square signal of 30 pA of amplitudeith duration of 200
ms starting at 50 ms was used as input. The measured output wdse membrane
voltage V.

The main aim in this case was to capture the qualitative feanes of the CC
trace. In general the weights of the objective functions werdetermined from the
di erent amplitudes of signals.

Three of such qualitative features are examined: the numbef the APs, the
depolarization and hyperpolarization amplitudes.

The functions to be minimized in this case take the followingorm:

2 The rst component penalizes the di erence between the nundy of action
potentials in the simulated and in the measured case:

W(Wcc1 = Wajnap i Nap] (13.3)

wherenj, andn3, denote the number of APs in the measured and simulated
case,w, =10

2 The second component is based on the maximum values of the APs

P

jmax(AP™) i max(AP®)j (13.4)

w
W(Wce2 =
AP

i
max(AP™) and max(AP;®) denote the maximum value of the corresponding
AP in the measured and simulated casaym.x = 0:5.

2 The last component is based on the minimum values of the traxén order to
capture the hyperpolarization phenomenon:

W(Wces = Wiin JMin(CC™) j min (CC%)j (13.5)

where CC™ and CCS denote the CC traces in the measured and simulated
caseWmin = 0:5.

The overall value of the objective function is calculated athe sum of VC and
CC objective functions, i.e.

X
W= WMcci + W(ve 1=1;23 (13.6)

i
The sampling time of the CC measurements was 0.5 ms. The modes tted to

average data of 5 cells. This meant the explicit averaging &C traces and the
averaging of characteristic features of CC traces.
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13.2 Numerical optimization algorithm

The basic Parallel Pattern Search (PPS) algorithm [91] is vg simple, its main steps
are the following (whereW denotes the objective function to be minimized):
Initialization

2 Set the iteration counterk = 0.

2 Select a step-length control paramete¢ .
2 Select a stopping tolerancéol.
2 Select a starting pointxo and evaluateW (Xo).

Iteration :

3. FW(X:) <W (x¢), thenxy A x, and W(x) A W(x.). Else¢ A 1¢,.
4. 1f ¢ >tol,k A k+1, go to Step 1. Else, exit.

As described by Kolda et al. [91], the APPS algorithm is an asghronous
extension of the PPS method that e ciently handles situations when the individual
objective function evaluations may take signi cantly di erent time intervals and
therefore it is very suitable to be implemented in a parallebr grid environment.
Furthermore, recent implementations of the APPS method hatie bound and linear
constraints on the parameters. The global convergence of RB under standard
assumptions is also proved in [92].

13.3 Model parameters

13.3.1 Parameters of the basic model

Parameters of the basic model, resulting from the tto VC traes and average values
of CC traces, are described in the following tables.

The reversal potentials (see Eq. (4.4)) were determined ek on the ionic con-
centrations of the intra and extracellular solutions used wring recording, and liter-
ature data. The estimated reversal potentials are:

Ena =100 mV; Ex =i 94mV; Eca =80 mV
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Table 13.1: Estimated capacitance and conductance values

C &a 8 & bu
7 170 170 67 7.7

gT gR gL gleakNa gleakK
3.2 105 104 0.06 0.17

where [C]=pF, [g]=nS

Table 13.2: Estimated activation and inactivation paramegrs

variable Vi K Vmax % Gmp Chase
Mya -38.2 4.5 -43 45 0.04 0.09
hna -45 -4 -78 19 25 0.7
Ma -36.2 109 -58 18 0.7 0.9
ha -63.5 -6.9 -100 32 244 34
Mg -7.2 128 -25 40 09 2.0
hk -67.2 -8 -39 55 -90 103
My -31.4 6.9 25 28 3.1 2.2

my -47 55 22 32 22 2.5
hr -78 -65 -53 22 3.8 4.1
mg -4 106 20 30 0 0.4
hgr -37  -11.5 -47 26 22 17
myg -2 105 26 33 23 0.5
h, -34  -115 -35 49 65 80

where Mi]=mV, [ Vinax =MV, [ Camp]=ms, [Cpase]=ms

13.3.2 Parameters of the bursting model

The parameters of the bursting model are described in the foling tables. The
parameters di erent from the basic model are emphasized wiitbold typeface.
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Table 13.3: Modi ed (in bold) capacitance and conductancealues

C Ha 8 & Y
7 190 375 57 4.7

&r &R O Yeakna  Yeakk
10.8 10.85 13.4 0.08 0.12

where [C]=pF, [g]=nS

Table 13.4: Modi ed (in bold) activation and inactivation parameters

variable Vi K Vmax % Gmp Chase
Mya -38.2 451 -43 45 0.04 0.09
hna -45 -4 -78 19 20 0.7
Ma -32.2 109 -65 23 1.7 0.9
ha -61.5 -6.9 -100 19 10 54
My -65 128 -25 40 0.9 2.0
hk -68.2 -8 -39 55 -90 103
My -29.2 6.2 25 28 3.1 2.2

mr -45 75 -42 32 31 39
hr -73 55 -44 22 48 44
mg -4 10.6 - - 0 0.4
hgr -37  -115 -47 26 22 17
mg -6 12 26 33 23 0.5
he -34  -115 -35 49 65 80

where Mi]=mV, [ Vinax =MV, [ Camp]=ms, [Cpase]=ms
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